\(B=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+..+\frac{1}{\sqrt{2014}+\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2015

nhân liên hợp  để trục căn thức ở mẫu

27 tháng 6 2015

B = \(\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{2015}-\sqrt{2014}}{\left(\sqrt{2015}-\sqrt{2014}\left(\sqrt{2014}+\sqrt{2015}\right)\right)}\)

B = \(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+....\sqrt{2015}-\sqrt{2014}\)  ( Tất cả mẫu đều bằng 1)

B = -1 + căn 2015 

15 tháng 10 2016

Chứng minh \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\) rồi áp dụng với n = 1,2,....,2014

15 tháng 10 2016

ki+e

n ejmfjnhcy

27 tháng 7 2017

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Thế vô bài toán được

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

\(=1-\frac{1}{\sqrt{2016}}\)

b, Ta có \(2015^2=\left(2014+1\right)^2=2014^2+2.2014+1\) 

=> \(2014^2+1=2015^2-2.2014\) 

=> \(B=\sqrt{1+2014^2+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{2015^2-2.2014+\frac{2014^2}{2015^2}}+\frac{2014}{2015}\) 

\(\sqrt{\left(2015-\frac{2014}{2015}\right)^2}+\frac{2014}{2015}\) = \(2015-\frac{2014}{2015}+\frac{2014}{2015}=2015\) 

=> đpcm

31 tháng 7 2015

\(\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+...-\frac{1}{\sqrt{2013}-\sqrt{2014}}+\frac{1}{\sqrt{2014}-\sqrt{2015}}\)

\(=\frac{\sqrt{2}+\sqrt{3}}{2-3}-\frac{\sqrt{3}+\sqrt{4}}{3-4}+...+\frac{\sqrt{2014}+\sqrt{2015}}{2014-2015}\)

\(=-\left(\sqrt{2}+\sqrt{3}\right)+\sqrt{3}+\sqrt{4}-\left(\sqrt{4}+\sqrt{5}\right)+...+\sqrt{2014}+\sqrt{2015}\)

=\(-\sqrt{2}+\sqrt{2015}\)

4 tháng 1 2016

Bài này ko khó,quá khó là đằng khác

4 tháng 1 2016

hazzzzzz đăng lên đây thầy cô cũng ko giải , ko thành viên nào giải chỉ toàn thấy cmr tào lao, thui đi kiếm trang khác hỏi