Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hahahahaha
xet A va B thi ta thay B la cac so binh phuong cong vao con A thi lai la cac so nhan nhau lien tiep neu de y ta thay neu lay 1*2-1=1....va tru thanh day so lien den 98
A-B=1+2+3+........................+98 co 98 so hang
A-B=(1+98)*98:2=4851
Ta có A =1.2 + 2.3 + 3.4 + ...+ 98.99
B = 1^2 + 2^2 + 3^2 +...+98^2 = 1.1+2.2+3.3+...+98.98
Suy ra: A-B= (1.2 + 2.3 + 3.4 + ...+ 98.99) - (1.1+2.2+3.3+...+98.98)
= (1.2-1.1) + (2.3-2.2) + (3.4-3.3) +...+ (98.99-98.98)
= 1(2-1) + 2(3-2) + 3(4-3) +...+ 98(99-98)
= 1.1 + 2.1 + 3.1 +...+ 98.1
= 1+ 2+ 3+...+ 98 = [98.(98+1)]/2= 98.99/2 = 4851
đúng nha
A = 1.2 + 2.3 + 3.4 + ... + 98.99
= 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 98.(98 + 1)
= 12 + 1 + 22 + 2 + 32 + 3 + ... + 982 +98
= (12 + 22 + 32 + ... + 982) + (1 + 2 + 3 + ... + 98)
= B + (1 + 98).98 : 2
= B + 4851
Do đó A = B + 4851 suy ra A - B = 4851
Kết luận : A - B = 4851
Ta có A=1.2+2.3+3.4+...+98.99
B=1^2+2^2+3^2+...+98^2=1.1+2.2+3.3+...+98.98
=> A-B=(1.2+2.3+3.4+...98.99)-(1.1+2.2+3.3+...+98.98)
=(1.2-1.1)+(2.3-2.2)+(3.4-3.3)+...+(98.99-98.98)
=1.(2-1)+2.(3-2)+3.(4-3)+...+98.(99-98)
=1.1+2.1+3.1+...98.1
=1+2+3+...+98=[98.(98+1)]/2=98.99/2=4851
đúng nha
Ta có:a=1.2+2.3+3.4+...+98.99
a=1(1+1)+2(2+1)+3(3+1)+...+98(98+1)
a=12+1+22+2+33+3+...+982+98
a=b+(1+2+3+4+...+98)
a=b+(1+98).98:2
a=b+4851
Vậy a-b =4851
\(\text{a=1.2+2.3+3.4+......+98.99}\)
\(=1\left(1\text{+}1\right)\text{+}2\left(2\text{+}1\right)\text{+}3\left(3\text{+}1\right)\text{+}.........\text{+}98\left(98\text{+}1\right)\)
\(=1^2\text{+}1\text{+}1^2\text{+}2\text{+}3^2\text{+}3\text{+}...\text{+}98^2\text{+}98\)
\(=b\text{+}\left(1\text{+}2\text{+}3\text{+}...\text{+}98\right)\)
\(=b\text{+}\left(98\text{+}1\right).98:2\)
\(=b\text{+}4851\)
\(\Rightarrow a-b=4851\)
b)Ta chứng minh công thức \(1^2+2^2+...+n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*)
Với n=1 (*) đúng
Giả sử (*) đúng với n=k, khi đó ta có
\(1^2+2^2+...+k^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}\) (1)
Ta chứng minh (1) đúng với n=k+1, từ (1) suy ra:
\(1^2+2^2+...+k^2+\left(k+1\right)^2=\frac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\)
\(=\left(k+1\right)\left(\frac{k\left(2k+1\right)}{6}+k+1\right)=\left(k+1\right)\frac{2k^2+7k+6}{6}\)
\(=\frac{\left(k+1\right)\left(2k^2+4k+3k+6\right)}{6}=\frac{\left(k+1\right)\left[2k\left(k+2\right)+3\left(k+2\right)\right]}{6}=\frac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)
Theo nguyên lí quy nạp ta có ĐPCM
Áp dụng vào bài toán ta có:
\(B=\frac{98\left(98+1\right)\left(2\cdot98+1\right)}{6}=318549\)
a)\(A=1\cdot2+2\cdot3+...+98\cdot99\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+98\cdot99\left(100-97\right)\)
\(3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+98\cdot99\cdot100-97\cdot98\cdot99\)
\(3A=98\cdot99\cdot100=\frac{98\cdot99\cdot100}{3}=323400\)
sorry , ko để ý,
Ta có A =1.2 + 2.3 + 3.4 + ...+ 98.99
B = 1^2 + 2^2 + 3^2 +...+98^2 = 1.1+2.2+3.3+...+98.98
Suy ra: A-B= (1.2 + 2.3 + 3.4 + ...+ 98.99) - (1.1+2.2+3.3+...+98.98)
= (1.2-1.1) + (2.3-2.2) + (3.4-3.3) +...+ (98.99-98.98)
= 1(2-1) + 2(3-2) + 3(4-3) +...+ 98(99-98)
= 1.1 + 2.1 + 3.1 +...+ 98.1
= 1+ 2+ 3+...+ 98 = [98.(98+1)]/2= 98.99/2 = 4851
A = 1.2 + 2.3 + 3.4 + ... + 98.99
A x 3 =1.2.3 + 2.3.3 + 3.4.3 + ... + 98.99.3
A x 3 = 1.2.3 + 2.3.(4-1 ) + 3.4.(5-2 )+...+98.99.(100-97)
A x 3 = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99
A x 3 = 98.99.100
=> A = 98.99.100:3
=> A = 323400
A rê. Lớp 6 ngược mà hỏi bài đó hở
đây là bài của bảo trân