\(\dfrac{5z-6y}{4}=\dfrac{6x-4z}{5}=\dfrac{4y-5x}{6}\) và 3x - 2y + 5z = 96<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{5z-6y}{4}=\dfrac{6x-4z}{5}=\dfrac{4y-5x}{6}\)

\(\Rightarrow\dfrac{5z-6y}{4}=\dfrac{6x-4z}{5}=\dfrac{4y-5x}{6}=\dfrac{5z-6y+6x-4z+4y-5x}{4+5+6}=\dfrac{x-2y+z}{4+5+6}\)

\(\Rightarrow\dfrac{x}{4}=\dfrac{-2y}{5}=\dfrac{z}{6}\)

\(\Rightarrow\dfrac{3x}{12}=\dfrac{-2y}{5}=\dfrac{5z}{30}\)

\(\Rightarrow\dfrac{3x}{12}=\dfrac{-2y}{5}=\dfrac{5z}{30}=\dfrac{3x-2y+5z}{12-5+30}=\dfrac{96}{37}\)

5 tháng 9 2018

từ \(\dfrac{5z-6y}{4}\)=\(\dfrac{6x-4z}{5}\)=\(\dfrac{4y-5x}{6}\)

=>\(\dfrac{20z-24y}{10}\)=\(\dfrac{30x-20z}{25}\)=\(\dfrac{24y-30x}{36}\)

=>\(\dfrac{20z-24y+30x-20z+24y-30x}{10+25+36}\)=0

=>20z - 24y = 30x - 20z = 30x - 20z = 24y - 30x = 0

=>20z = 24y = 15x => \(\dfrac{x}{4}\)=\(\dfrac{y}{5}\)=\(\dfrac{z}{6}\) => \(\dfrac{3x}{12}\)=\(\dfrac{2y}{10}\)=\(\dfrac{5z}{30}\)

=\(\dfrac{3x-2y+5z}{12-10+30}\) = 3

\(\dfrac{3x}{12}\)= 3 => 3x= 36 => x= 12

\(\dfrac{2y}{10}\)=3 => 2y= 30 => y=15

\(\dfrac{5z}{30}\)=3 => 5z= 90 => z= 18

vậy x=12, y=15, z=18

26 tháng 10 2017

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

26 tháng 10 2017

buồn nhỉ

14 tháng 6 2017

Ta có : \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\)\(\frac{4y-5x}{6}\)\(=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}\)

\(=\frac{20z-24y+30x-20z+24y-30x}{16+25+36}\)\(=0\)

\(\Rightarrow\frac{5z-6y}{4}=0\Leftrightarrow5z-6y=0\Leftrightarrow5z=6y\Leftrightarrow\frac{y}{5}=\frac{z}{6}\left(1\right)\)

\(\Rightarrow\frac{6x-4z}{5}=0\Leftrightarrow6x-4z=0\Leftrightarrow6x=4z\Leftrightarrow\frac{z}{6}=\frac{x}{4}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\)\(\frac{y}{5}=\frac{z}{6}=\frac{x}{4}\)\(=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)

Áp dụng tính chất dãy tỉ số băng nhau, ta có:

\(\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)

\(\Rightarrow\frac{x}{4}=3\Leftrightarrow x=3.4=12\)

\(\Rightarrow\frac{y}{5}=3\Leftrightarrow y=3.5=15\)

\(\Rightarrow\frac{z}{6}=3\Leftrightarrow z=3.6=18\)

Vậy \(\hept{\begin{cases}x=12\\y=15\\z=18\end{cases}}\)

10 tháng 9 2020

       Bài làm :

Ta có :

 \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}\)\(\)

\(=\frac{20z-24y+30x-20z+24y-30x}{16+25+36}\)

\(=0\)

\(\Rightarrow\frac{5z-6y}{4}=0\Leftrightarrow5z-6y=0\Leftrightarrow5z=6y\Leftrightarrow\frac{y}{5}=\frac{z}{6}\left(1\right)\)

\(\Rightarrow\frac{6x-4z}{5}=0\Leftrightarrow6x-4z=0\Leftrightarrow6x=4z\Leftrightarrow\frac{z}{6}=\frac{x}{4}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{y}{5}=\frac{z}{6}=\frac{x}{4}=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ;  ta có:

\(\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)

\(\Rightarrow\frac{x}{4}=3\Leftrightarrow x=3.4=12\)

\(\Rightarrow\frac{y}{5}=3\Leftrightarrow y=3.5=15\)

\(\Rightarrow\frac{z}{6}=3\Leftrightarrow z=3.6=18\)

Vậy x=12 ; y=15 ; z=18

28 tháng 1 2019

Vi 8x = 5y , 7y = 12z

=>\(\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{y}{8}\\\dfrac{y}{12}=\dfrac{z}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x}{60}=\dfrac{y}{96}\\\dfrac{y}{96}=\dfrac{z}{56}\end{matrix}\right.\)

=> \(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}\)
Ap dung tinh chat day ti so bang nhau co
\(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}=\dfrac{x+y+z}{60+96+56}=\dfrac{-318}{212}=\dfrac{-3}{2}\)
\(\dfrac{x}{60}=\dfrac{-3}{2}\Rightarrow x=60.\dfrac{-3}{2}=-90\)
\(\dfrac{y}{96}=\dfrac{-3}{2}\Rightarrow y=96.\dfrac{-3}{2}=-144\)
\(\dfrac{z}{56}=\dfrac{-3}{2}\Rightarrow z=56.\dfrac{-3}{2}=-84\)
Vay x= -90, y= -144 va z=-84

c: =>|x-2009|=2009-x

=>x-2009<=0

=>x<=2009

d: =>2x-1=0 và y-2/5=0 và x+y-z=0

=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=9/10

a: 8x=5y; 7y=12z

=>x/5=y/8; y/12=z/7

=>x/15=y/24=z/14

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{15}=\dfrac{y}{24}=\dfrac{z}{14}=\dfrac{x+y+z}{15+24+14}=-\dfrac{318}{53}=-6\)

=>x=-90; y=-144; z=-84

3 tháng 4 2018

Ta có : \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}\)

\(\Leftrightarrow\frac{20z-24y}{4^2}=\frac{30x-20z}{5^2}=\frac{24y-30x}{6^2}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có :

\(\frac{20z-24y}{4^2}=\frac{30x-20z}{5^2}=\frac{24y-30x}{6^2}=\frac{20z-24y+30x-20z+24y-30x}{4^2+5^2+6^2}\)

\(=\frac{0}{4^2+5^2+6^2}=0\)

\(\Rightarrow\hept{\begin{cases}20z=24y\\30x=20z\\24y=30x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}5z=6y\\6x=4z\\4y=5x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{z}{6}=\frac{y}{5}\\\frac{x}{4}=\frac{z}{6}\\\frac{y}{5}=\frac{x}{4}\end{cases}}\)

\(\Leftrightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)

\(\Leftrightarrow\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}\)

Sau đó, áp dụng tính chất của dãy tỉ số bằng nhau là được nhé.

7 tháng 4 2019

\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5x}{6}\)

\(=\frac{4}{4}.\frac{5z-6y}{4}=\frac{5}{5}.\frac{6x-4z}{5}=\frac{6}{6}.\frac{4y-5x}{6}\)

\(=\frac{20z-24y}{16}=\frac{30x-20z}{25}=\frac{24y-30x}{36}=\frac{\left(20z-24y\right)+\left(30x-20z\right)+\left(24y-30x\right)}{16+25+36}\)

\(=\frac{20z-24y+30x-20z+24y-30x}{77}=\frac{\left(30x-30x\right)\left(24y-24y\right)\left(20z-20z\right)}{77}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{5z-6y}{4}=0\\\frac{6x-4z}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}5z=6y\\6x=4z\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{z}{6}=\frac{y}{5}\\\frac{x}{4}=\frac{z}{6}\end{matrix}\right.\Rightarrow\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)

\(=\frac{3x}{12}=\frac{2y}{10}=\frac{5z}{30}=\frac{3x-2y+5z}{12-10+30}=\frac{96}{32}=3\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{4}=3\\\frac{y}{5}=3\\\frac{z}{6}=3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=3.4=12\\y=3.5=15\\z=3.6=18\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=12\\y=15\\z=18\end{matrix}\right.\)