\(\in Z\)tm 2x2+3y2=77

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

bn dào khánh linh có vẻ jioi, mk làm 1 câu rùi bn lam tip, nếu k lam dc nt cho mk

a) x/6 = y/10

bn bình phuong tlt trên va nhân 2 ty số đầu mhe: 

x/6 = x2/36 = 2x2/72

y/10 = y2/100

đến đây thì dễ rùi, nếu hiu dc thi cám ơn mk đi vi mk dăt tay bn 

cung nhau di tren con dg tuoi sang

2 tháng 10 2016

a)10x=6y=>\(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{2x^2-y^2}{18-25}=\frac{-28}{-7}=4\)

b) \(\frac{x^3}{8}=\frac{x}{2}\)

\(\frac{y^3}{64}=\frac{y}{4}\)

\(\frac{z^3}{216}=\frac{z}{6}\)

=>........ áp dụng t.chất dãy tỉ số = nhau

c)

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

=>\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

=>6x=12( cùng  tử)

=>x=2

15 tháng 4 2019

đỗ thị cẩm ly dạng này thì lớp 9 mới chính thức học,nhưng lớp 7 có thể đưa về những dạng quen thuộc để giải ạ.Vd: tìm x để biểu thức y nguyên

                                                  Lời giải

Theo đề bài,với x = 1 suy ra \(0y=3\) (vô lí)

Xét \(x\ne1\),chia hai vế của đẳng thức cho x - 1,được:

\(y=\frac{x^2+2}{x-1}=\frac{x^2-1^2}{x-1}+\frac{3}{x-1}\)

\(=\left(x+1\right)+\frac{3}{x-1}\)(dùng đẳng thức:\(a^2-b^2=\left(a-b\right)\left(a+b\right)\) ,tự chứng minh,sẽ ra được kết quả này)

Do x + 1 nguyên (với mọi x thuộc Z),nên để y thuộc Z(tức là y nguyên ấy)

Thì \(\frac{3}{x-1}\inℤ\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Suy ra \(x\in\left\{-2;0;2;4\right\}\).Thay từng giá trị của x vào \(y=\frac{x^2+2}{x-1}\) sẽ tìm được y (lưu ý đk y nguyên)

15 tháng 4 2019

Đầu tiên,xét bài toán phụ: CMR: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
Thật vậy,ta có: \(a^2-b^2=\left(a^2+ab\right)-\left(ab+b^2\right)\)

\(=a\left(a+b\right)-b\left(a+b\right)=\left(a-b\right)\left(a+b\right)\)

Trở lại bài toán,ta có \(y\left(x-1\right)-x^2=2\) (chuyển vế)

Thêm 12 vào mỗi vế và áp dụng quy tắc dấu ngoặc:

\(y\left(x-1\right)-\left(x^2-1^2\right)=3\)

\(\Leftrightarrow y\left(x-1\right)-\left(x-1\right)\left(x+1\right)=3\)

\(\Leftrightarrow\left(x-1\right)\left(y-x-1\right)=3\) 

Dễ dàng nhận xét rằng \(x-1;y-x-1\inƯ\left(3\right)\)

Xét bốn trường hợp:

TH1: \(\hept{\begin{cases}x-1=-3\\y-x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-2\end{cases}}\)

TH2: \(\hept{\begin{cases}x-1=-1\\y-x-1=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-2\end{cases}}\)

TH3: \(\hept{\begin{cases}x-1=1\\y-x-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\end{cases}}\)

TH4; \(\hept{\begin{cases}x-1=3\\y-x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=6\end{cases}}\)

Vậy \(\left(x;y\right)=\left\{\left(-2;-2\right),\left(0;-2\right),\left(2;6\right),\left(4;6\right)\right\}\)

25 tháng 7 2017

a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)

     \(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)

THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)

\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)

Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)

             \(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)

KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)

25 tháng 7 2017

b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)  

                \(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)

Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :

\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)

\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)

\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)

Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)

     \(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)

16 tháng 7 2019

2x=3y=>x/3=y/2=>x^2/ 9=y^2/ 4

áp dụng t/c DTSBN:

x^2-y^2/ 9-4=25/5=5

=> x^2=45 =>x=+_ căn 45

y^2=20=> y=+_ căn 20

21 tháng 7 2017

B)ĐỀ BÀI \(\Leftrightarrow\left(\frac{X}{2}\right)^3=\frac{X}{2}.\frac{Y}{3}.\frac{Z}{5}=\frac{810}{30}=27\\ \)

             \(\Leftrightarrow\frac{X}{2}=3\Rightarrow X=6\)

 TỪ ĐÓ SUY RA Y=9;Z=15

6 tháng 10 2016

Mình chỉ bt làm câu d)

Cách 1: 

\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x\times\frac{x}{4}=y\times\frac{y}{5}\)

\(\Rightarrow\frac{x^2}{4}=\frac{xy}{5}\Rightarrow\frac{x^2}{4}=\frac{180}{5}=36\)

\(\Rightarrow x^2=36\times4=144=\orbr{\begin{cases}\left(+12\right)^2\\\left(-12\right)^2\end{cases}\Rightarrow x=\orbr{\begin{cases}12\\-12\end{cases}}}\)

Với x = 12 thì y = 180 : 12 = 15

Với x = -12 thì y = 180 : (-12) = -15

* Cách 2:

\(\frac{x}{y}=\frac{4}{5}\Rightarrow\frac{x}{4}=\frac{y}{5}\Rightarrow x=\frac{4}{5}y\)

Ta có: 

\(xy=180\Rightarrow\frac{4}{5}y\times x=180\times\frac{4}{5}=144\)

Mà \(\frac{4}{5}y=x\Rightarrow x^2=144\Rightarrow...\) làm tương tự câu a

6 tháng 10 2016

Nhầm làm tương tự cách 1 :

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

21 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)

= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5

Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11

\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17

\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23

Vậy x = 11 ; y = 17 ; z = 23

 

21 tháng 11 2016

a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)

Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow x^2=1;y^2=4;z^2=9\)

=> x = 1 hoặc -1

y = 2 hoặc -2

z = 3 hoặc -3

19 tháng 7 2017

Em chỉ giải phần B thôi nhé !

x/4=y/3=x-y/4-3=x2-y2=42-32=28/7=4

Suy ra x/4=4 -> x= 16

            y/3=4-> y =12

 chị thông cảm em mói học lop 6 dung thi dung sai thi sai dung la em nha

19 tháng 7 2017

hk sao đâu e