Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^2-2xy+2y^2-6x-6y+18=0\)
\(\Leftrightarrow x^2+x^2-2xy+y^2+y^2-6x-6y+9+9=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+\left(y^2-6y+9\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-3\right)^2+\left(y-3\right)^2=0\)
Mà \(\left(x-y\right)^2\ge0;\left(y-3\right)^2\ge0;\left(x-3\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}x-y=0\\y-3=0\\x-3=0\end{cases}}\Leftrightarrow z=y=3\)
a/ (x^2-4x+4)+(y^2+2y+1)=0
<=> (x-2x)^2+(y+1)^2 = 0 Vậy x=2 và y = -1
b/ (x^2+2xy+y^2) + ( y^2-2y+1) = 0
<=> (x+y)^2 + (y-1)^2 = 0 Vậy x=y=1
a) { x^2 - 4x +4 } +{y^2+2x+1}=0
<=>{ x - 2x}^2+{y+1}^2=0 Vậy x =2 vầy =-1
b) { x^2 +2xy +y^2} +{y^2 - 2y +1=0}
<=> {x+y}^2+{ y - 1 }^2 =0 Vậy x=y=1.
NHA BẠN!
Mình biết hơi muộn
\(A=x^2+2xy+6x+6y+2y^2+8\Leftrightarrow x^2+2xy+6x+6y+y^2+9-1\)
\(A=0\Rightarrow\left(x+y+3\right)^2+y^2-1=0\)
\(\Rightarrow-1\le x+y+3\le1\) .
\(\Rightarrow2012\le x+y+3+2013\le2014\)
\(\Rightarrow2012\le B\le2014\)
=> x + 2y = 0 hoặc x2 - 2xy + 4y2 = 0
còn lại thì e bó tay . canh
(x+2y)(x2-2xy+4y2)=0
<=>x3+(2y)3=0
<=>x3+8y3=0 (1)
(x-2y)(x2+2xy+4y2)=0
<=>x3-(2y)3=0
<=>x3-8y3=0 (2)
từ (1) và (2)=>x3+8y3-x3+8y3=0
<=>16y3=0
<=>y=0
thay y=0 vào (1) ta đc:
x3-0=0
<=>x3=0
<=>x=0
\(x^2+2y^2+2xy-6x+18=0\)
\(\Rightarrow\left(x+y\right)^2-6\left(x+y\right)+9+y^2+6y+9=0\)
\(\Rightarrow\left(x+y\right)^2-2.\left(x+y\right).3+3^2+y^2+2.y.3+3^2=0\)
\(\Rightarrow\left(x+y-3\right)^2+\left(y+3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x+y-3=0\\y+3=0\end{cases}\Rightarrow}\hept{\begin{cases}x=6\\y=-3\end{cases}}\)
Cách khác :
\(x^2+2y^2+2xy-6x+18=0\)
\(2\left(x^2+2y^2+2xy-6x+18\right)=0\)
\(2x^2+4y^2+4xy-12x+36=0\)
\(\left[\left(2y\right)^2+2\cdot2y\cdot x+x^2\right]+\left(x^2-2\cdot x\cdot6+6^2\right)=0\)
\(\left(2y+x\right)^2+\left(x-6\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}2y+x=0\\x-6=0\end{cases}\Rightarrow\hept{\begin{cases}2y=-6\\x=6\end{cases}\Rightarrow}\hept{\begin{cases}y=-3\\x=6\end{cases}}}\)
P.s: Pham Van Hung đây là cách khác :)