\(\sqrt{x+y-z}=\sqrt{x}+\sqrt{y}-\sqrt{z}.ĐK:x,y,z\ge0;x+y-z\ge0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

Nhẩm điểm rơi rồi xơi:)

\(\sqrt{1.x}+\sqrt{1\left(y-1\right)}+\sqrt{1\left(z-2\right)}\)]

\(\le\frac{x+1}{2}+\frac{1+y-1}{2}+\frac{1+z-2}{2}=\frac{x+y+z}{2}\)

Đẳng thức xảy ra khi x = 1; y = 2; z = 3

10 tháng 7 2015

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)\(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\ge xy+yz+zx+2\left(xy+yz+zx\right)=3\left(xy+yz+zx\right)\)

Áp dụng Côsi: 

\(xy+zx\ge2\sqrt{xy.zx}=2x\sqrt{yz}\)

Tương tự: \(xy+yz\ge2y\sqrt{zx};\text{ }yz+zx\ge2z\sqrt{xy}\)

\(\Rightarrow2\left(xy+yz+zx\right)\ge2\left(x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\right)\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\ge3\left(x\sqrt{yz}+y\sqrt{zx}+z\sqrt{xy}\right)\)

Dấu "=" xảy ra khi và chỉ khi \(x=y=z\)

9 tháng 7 2018

Áp dụng BĐT Cosi cho 3 số dương x,y,z ta có:

\(x+y+z\ge3\sqrt[3]{xyz}\Leftrightarrow\frac{x+y+z}{3}\ge\sqrt[3]{xyz}\)

Dấu "=" xảy ra khi x=y=z

13 tháng 7 2018

bạn ơi giải cách khác đi mình chưa học BĐT cô si

1 tháng 3 2018

b, Gọi biểu thức đề ra là B

=> Theo bđt cô si ta có : \(B\ge3\sqrt[3]{\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{z^2}\right)\left(z^2+\frac{1}{x^2}\right)}\)

=> \(B\ge3\sqrt[3]{2\cdot\frac{x}{y}\cdot2\cdot\frac{y}{z}\cdot2\cdot\frac{z}{x}}=3\sqrt[3]{8}=6\) 

( Chỗ này là thay \(x^2+\frac{1}{y^2}\ge2\sqrt{\frac{x^2}{y^2}}=2\cdot\frac{x}{y}\) và 2 cái kia tương tự vào )

=> Min B=6

1 tháng 3 2018

Theo bđt cô si thì ta có : \(\sqrt{\left(x+y\right)\cdot1}\le\frac{x+y+1}{2}\)

\(\sqrt{\left(z+x\right)\cdot1}\le\frac{z+x+1}{2}\)

\(\sqrt{\left(y+z\right)\cdot1}\le\frac{y+z+1}{2}\)

=> Cộng vế theo vế ta được : \(A\le\frac{2\left(x+y+z\right)+3}{2}=\frac{5}{2}\)

Dấu = xảy ra khi : x+y+z=1 và x+y=1 và y+z=1 và x+z=1

=> \(x=y=z=\frac{1}{3}\)

Vậy ...

29 tháng 7 2021

Nhớ mang máng câu này hồi trước có giải rồi. Thôi tự vô tìm đi nha

14 tháng 7 2015

+\(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\Leftrightarrow\left(\sqrt{x-y+z}+\sqrt{y}\right)^2=\left(\sqrt{x}+\sqrt{z}\right)^2\)

\(\Leftrightarrow x-y+z+y+2\sqrt{xy-y^2+zx}=x+z+2\sqrt{zx}\)

\(\Leftrightarrow2\sqrt{xy-y^2+zx}=2\sqrt{zx}\Leftrightarrow xy-y^2+zx=zx\)

\(\Leftrightarrow y\left(x-y\right)=0\Leftrightarrow x=y\text{ (do }y\ne0\text{)}\)

+\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow\frac{xy+yz+zx}{xyz}=1\Leftrightarrow xy+yz+zx=xyz\)

\(\Leftrightarrow xy+yz+zx-xyz=0\)\(\Leftrightarrow x^2+zx+zx-x^2z=0\Leftrightarrow x\left(x+2z-xz\right)=0\)

\(\Leftrightarrow x+2z-xz=0\text{ (do }x\ne0\text{)}\)\(\Leftrightarrow\left(x-2\right)\left(z-1\right)=2=-1.\left(-2\right)=1.2\)

Do x, z nguyên nên có các trường hợp sau:

+\(x-2=-1\Leftrightarrow x=1\text{ và }z-1=-2\Leftrightarrow z=-1\text{ (loại do }z>0\text{)}\)

+\(x-2=1\Leftrightarrow x=3\text{ và }z-1=2\Leftrightarrow z=3\Rightarrow\left(x;y;z\right)=\left(3;3;3\right)\)

+\(x-2=-2\Leftrightarrow x=0\text{ và }z-1=-1\Leftrightarrow z=0\text{ (loại do }x,z\ne0\text{)}\)

+\(x-2=2\Leftrightarrow x=4\text{ và }z-1=1\Leftrightarrow z=2\Rightarrow\left(x;y;z\right)=\left(4;4;2\right)\)

Kết luận: \(\left(x;y;z\right)=\left(3;3;3\right);\left(4;4;2\right)\)

 

 

14 tháng 7 2015

tớ chưa lên lớp 8 nên ko bít làm