Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\frac{x^{2}-2x+2018}{x^{2}}\)
\(D=\frac{x^{2}-2*x*1+1+2017}{x^{2}}\)
\(D= \frac{(x-1)^{2}+2017}{x^{2}}\)
Nhận xét: Để D Đặt GTNN thì \((x-1)^{2} + 2017\) Đạt GTNN
Mà \((x-1)^{2} \geq 0\) . Nên:
\((x-1)^{2}+2017\)\(\geq 2017\). GTNN của \((x-1)^{2}+2017=2017 \) Khi x-1=0 => x=1
Thay x=1 vào D
GTNN D=2017
Bài làm:
+ \(C=10\left(x^2-2\right)+5=10x^2-20+5=10x^2-15\ge-15\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(10x^2=0\Rightarrow x=0\)
Vậy \(Min\left(C\right)=-15\Leftrightarrow x=0\)
+ \(D=\left(7-x\right)\left(2x+1\right)=-2x^2+13x+7=-2\left(x^2-\frac{13}{2}x+\frac{169}{16}\right)-\frac{225}{8}\)
\(=-2\left(x-\frac{13}{4}\right)^2-\frac{225}{8}\le-\frac{225}{8}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(-2\left(x-\frac{13}{4}\right)^2=0\Rightarrow x=\frac{13}{4}\)
Vậy \(Max\left(D\right)=-\frac{225}{8}\Leftrightarrow x=\frac{13}{4}\)
+ \(H=x^2+y^2+2x-4y+10=\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+5\)
\(=\left(x+1\right)^2+\left(y-2\right)^2+5\ge5\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
Vậy \(Min\left(H\right)=5\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
+ \(E=-x^2-4x+6y-y^2-2021=-\left(x^2+4x+4\right)-\left(y^2-6y+9\right)-2008\)
\(=-\left(x+2\right)^2-\left(y-3\right)^2-2008\le-2008\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}-\left(x+2\right)^2=0\\-\left(y-3\right)^2=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy \(Max\left(E\right)=-2008\Leftrightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
Học tốt!!!!
BÀI 1:
\(A=\left(x-10\right)^2+103\)
Có: \(\left(x-10\right)^2\ge0\forall x\)
=> \(A\ge103\)
DẤU "=" XẢY RA <=> \(\left(x-10\right)^2=0\Rightarrow x=10\)
\(B=\left(2x+1\right)^2-6\)
Có: \(\left(2x+1\right)^2\ge0\forall x\)
=> \(B\ge-6\)
DẤU "=" XẢY RA <=> \(\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\)
BÀI 3:
a) \(A=y^4+y^3-y^2-2y-\left(y^4+y^3+y^2-2y^2-2y-2\right)\)
\(A=y^4+y^3-y^2-2y-y^4-y^3+y^2+2y+2\)
\(A=2\)
b) \(B=\left(2x\right)^3+3^3-8x^3+2\)
\(B=29\)
Bài 1.
A = x2 - 20x + 103
A = ( x2 - 20x + 100 ) + 3
A = ( x - 10 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra <=> x - 10 = 0 => x = 10
=> MinA = 3 <=> x = 10
B = 4x2 + 4x - 5
B = ( 4x2 + 4x + 1 ) - 6
B = ( 2x + 1 )2 - 6 ≥ -6 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = -6 <=> x = -1/2
Bài 2.
A = -x2 + 8x - 21
A = -x2 + 8x - 16 - 5
A = -( x2 - 8x + 16 ) - 5
A = -( x - 4 )2 - 5 ≤ -5 ∀ x
Đẳng thức xảy ra <=> x - 4 = 0 => x = 4
=> MaxA = -5 <=> x = 4
B = lỗi đề :>
Bài 3.
a) y( y3 + y2 - y - 2 ) - ( y2 - 2 )( y2 + y + 1 )
= y4 + y3 - y2 - 2y - ( y4 + y3 + y2 - 2y2 - 2y - 2 )
= y4 + y3 - y2 - 2y - y4 - y3 - y2 + 2y2 + 2y + 2
= 2 ( đpcm )
b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 2( 4x3 - 1 )
= ( 2x )3 + 27 - 8x3 + 2
= 8x3 + 27 - 8x3 + 2
= 29 ( đpcm )
\(ĐKXĐ:x\ne0;x\ne\pm2\)
a) \(M=\left[\frac{x^2}{x^3-4x}+\frac{6}{6-3x}+\frac{1}{x+2}\right]:\left(x-2+\frac{10-x^2}{x+2}\right)\)
\(\Leftrightarrow M=\left[\frac{x^2}{x\left(x-2\right)\left(x+2\right)}-\frac{6}{3\left(x-2\right)}+\frac{1}{x+2}\right]:\frac{\left(x-2\right)\left(x+2\right)+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x\left(x+2\right)+3x\left(x-2\right)}{3x\left(x-2\right)\left(x+2\right)}:\frac{x^2-4+10-x^2}{x+2}\)
\(\Leftrightarrow M=\frac{3x^2-6x^2-12x+3x^2-6x}{3x\left(x-2\right)\left(x+2\right)}:\frac{6}{x+2}\)
\(\Leftrightarrow M=\frac{-18x\left(x+2\right)}{18x\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow M=-\frac{1}{x-2}\)
\(\Leftrightarrow M=\frac{1}{2-x}\)
b) Để M đạt giá trị lớn nhất
\(\Leftrightarrow2-x\)đạt giá trị nhỏ nhất
\(\Leftrightarrow x\)đạt giá trị lớn nhất
Vậy để M đạt giá trị lớn nhất thì x phải đạt giá trị lớn nhất \(\left(x\inℤ\right)\)
玉明, bạn làm sai rồi. Dấu ngoặc vuông là dấu phần nguyên không phải dấu ngoặc thường
\(C=\frac{30}{4x-4x^2-6}=\frac{-30}{4x^2-4x+6}=\frac{-30}{\left(2x-1\right)^2+5}\)
Vì \(\left(2x-1\right)^2\ge0\Rightarrow\left(2x-1\right)^2+5\ge5\Rightarrow\frac{1}{\left(2x-1\right)^2+5}\le\frac{1}{5}\Rightarrow C=\frac{-30}{\left(2x-1\right)^2+5}\ge\frac{-30}{5}=-6\)
Dấu "=" xảy ra khi x=1/2
Vậy Cmin=-6 khi x=1/2
\(E=\frac{1000}{x^2+y^2-20x-20y+2210}=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\)
Vì \(\left(x-10\right)^2\ge0;\left(y-10\right)^2\ge0\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2\ge0\)
\(\Rightarrow\left(x-10\right)^2+\left(y-10\right)^2+2010\ge2010\)
\(\Rightarrow\frac{1}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1}{2010}\)
\(\Rightarrow E=\frac{1000}{\left(x-10\right)^2+\left(y-10\right)^2+2010}\le\frac{1000}{2010}=\frac{100}{201}\)
Dấu "=" xảy ra khi x=y=10
Vậy Emax = 100/201 khi x=y=10