K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2020

Vì \(\left(2x-5\right)^{2020}\ge0\forall x\)\(\left(5y+1\right)^{2022}\ge0\forall y\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)

mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)

Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)

14 tháng 9 2020

( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0

Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x

            ( 5y + 1 )2022 ≥ 0 ∀ y

=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y

Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0

Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)

28 tháng 9 2020

GIÚP MIK VS MIK SẼ TiCK CHO BẠN ĐÚNG

28 tháng 9 2020

Câu hỏi của ꧁♥ღ๖ۣۜ Jinny - kun ๖ۣۜღ♥꧂ - Toán lớp 7 | Học trực tuyến

16 tháng 10 2019

\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\)

Ta có:

\(\left\{{}\begin{matrix}\left(2x-5\right)^{2020}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall xy.\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0\) \(\forall xy.\)

\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0.\)

\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)

\(\Rightarrow\left(2x-5\right)+\left(3y+4\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)

Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)

Chúc bạn học tốt!

16 tháng 10 2019

giúp mình với

8 tháng 7 2015

Do (2x-5)2000>0

(3y+4)2002>0

Mà (2x-5)2000+(3y+4)2002<0

=>(2x-5)2000=0 (3y+4)2002=0

<=>x=2,5 y=4/3

6 tháng 10 2019

Vì (2x+3 )^2018>= 0 ; (3y-5)^2020 >=0 

=>(2x + 3)2018+ (3y-5)2020  >=  0

mà  (2x + 3)2018+ (3y-5)2020 (< hoặc =) 0

=> (2x + 3)2018+ (3y-5)2020  =  0

=> (2x+3 )^2018= 0 ; (3y-5)^2020 =0 

=> 2x+3=0 ; 3y-5=0

=> 2x=-3; 3y=5

=> x=-3/2; y=5/3

b)(x - y - 7)2 >=0; (4x - 3y - 24)2 >= 0

=> (x - y - 7)2 + (4x - 3y - 24)2 >= 0

Dấu = xảy ra <=> (x - y - 7)2 =0; (4x - 3y - 24)2 = 0

<=> x-y-7=0 ; 4x-3y-24=0

<=> x-y=7 ; 4x-3y=24

<=> 4x-4y=28; 4x-3y=24

<=> y=-4; x-y=7

<=> y=-4 ; x=3

6 tháng 10 2019

khó nhỉ

19 tháng 4 2021

Vì 105 là số nguyên lẻ nên 2x+5y+1 và 2020lxl+y+x2+x là số lẻ

=> 5y chẵn => y chẵn

Có:x2+x=x(x+1) là số chẵn nên 2020lxl lẻ

=>x=0

Thay x=0 vào phương trình (2x+5y+1)(2020lxl+y+x2+x)=105 ta được:

 \(\left(5y+1\right)\left(y+1\right)=105\Leftrightarrow5y^2+6y-104=0\)

Do \(y\in Z\)nên ta tìm ra y=4

Vậy phương trình có nghiệm là \(\left(x;y\right)=\left(0;4\right)\)