Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn ghi ra nhiều vậy người khác nhìn rối mắt không trả lời được đâu ghi từng bài ra thôi
Mình chỉ làm được vài bài thôi, kiến thức có hạn :>
Bài 1:
Câu a và c đúng
Bài 2:
a) |x| = 2,5
=>x = 2,5 hoặc
x = -2,5
b) |x| = 0,56
=>x = 0,56
x = - 0,56
c) |x| = 0
=. x = 0
d)t/tự
e) |x - 1| = 5
=>x - 1 = 5
x - 1 = -5
f) |x - 1,5| = 2
=>x - 1,5 = 2
x - 1,5 = -2
=>x = 2 + 1,5
x = -2 + 1,5
=>x = 3,5
x = - 0,5
các câu sau cx t/tự thôi
Bài 3: Ko hỉu :)
Bài 4: Kiến thức có hạn :)
a.3 - | x + 7 | - 1/2 = 1/3
3 - | x + 7 | = 1/3 +1/2
3 - | x +7 | = 5/6
| x+ 7 | = 3 - 5/6
| x + 7| = 13/ 6
roi chia thanh 2 truong hop la xong ok
1)
a, \(\frac{x-7}{6}\) = \(\frac{2^3}{16}\)
⇒ 16 (x-7) = 6.23
⇒ 16x - 112 = 48
⇒ x = \(\frac{48+112}{16}\) = 10
Vậy: x = 10
b, (-0,75x) : 3 = \(\left(-2\frac{1}{2}\right)\) : 0,125
⇒ -0,25x = -2,5 : 0,125 =-20
⇒ x = \(\frac{-20}{-0,25}\) = 80
Vậy: x = 80
d, |2,6−x|=1,5
Hoặc 2,6−x=1,5
⇒ x = 2,6 -1,5 = 1,1
Hoặc 2,6−x=-1,5
⇒ x = 2,6 - (-1,5) = 4,1
Vậy: x ∈ {1,1; 4,1}
e, |x|=2019 và x > 0
Vì x > 0 nên x = - 2019
2)
a, \(\frac{x}{4}\) = \(\frac{y}{9}\) và x - y = 90 (ko có z trong phép tính, chắc bạn nhầm lẫn)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{4}\) = \(\frac{y}{9}\) = \(\frac{x-y}{4-9}\) =\(\frac{90}{-5}\) = -18
+ \(\frac{x}{4}\) = -18 ⇒ x = -18 . 4 = -72
+ \(\frac{y}{9}\) = -18 ⇒ y = -18 . 9 = -162
Vậy: x = -72, y = -162
Lát mình làm tiếp nha mn
c) <=> \(\frac{x+1}{2016}+1+\frac{x+2}{2015}+1\)\(+\frac{x+3}{2014}+1\)= \(\frac{x+4}{2013}+1+\frac{x+5}{2012}+1\)\(+\frac{x+6}{2011}\)
<=> \(\frac{x+1+2016}{2016}+\frac{x+2+2015}{2015}+\frac{x+3+2014}{2014}\) \(=\frac{x+4+2013}{2013}+\frac{x+5+2012}{2012}+\frac{x+6+2011}{2011}\)
<=> \(\frac{x+2017}{2016}+\frac{x+2017}{2015}+\frac{x+2017}{2014}-\frac{x+2017}{2013}-\frac{x+2017}{2012}-\frac{x+2017}{2011}=0\)
<=> \(\left(x+2017\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)=0\)
vì \(\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}-\frac{1}{2011}\right)\)khác 0
=> \(x+2017=0\) => \(x=-2017\)
Vậy \(S=\left\{-2017\right\}\)
\(\left|x-1,5\right|=2\\ \Rightarrow\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3,5\\x=-0,5\end{matrix}\right.\)
Vậy \(x\in\left\{3,5;-0,5\right\}\)
-----
\(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\\ \Rightarrow\left|x+\frac{3}{4}\right|=\frac{1}{2}\\ \Rightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{2}\\x=-\frac{5}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{2};-\frac{5}{4}\right\}\)
-----
\(\left|x-2\right|=x\left(ĐK:x\ge0\right)\\ \Rightarrow\left[{}\begin{matrix}x-2=x\\x-2=-x\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-x=2\\x+x=2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}0=2\left(\text{vô lý}\right)\\2x=2\end{matrix}\right.\\ \Rightarrow x=1\left(tmđk\right)\)
Vậy \(x=1\)
-----
\(\left|x-3,4\right|+\left|2,6-x\right|=0\\ \Rightarrow\left|x-3,4\right|=-\left|2,6-x\right|\)
Mà \(\left|2,6-x\right|\ge0\forall x\Rightarrow-\left|2,6-x\right|\le0\forall x\)
\(\Rightarrow\left|x-3,4\right|\le0\forall x\left(\text{vô lý}\right)\)
Vậy \(x\in\varnothing\)
a/ \(\left|x-1,5\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}x-1,5=2\\x-1,5=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2+1,5=3,5\\x=-2+1,5=-0,5\end{matrix}\right.\)
b/ \(\left|x+\frac{3}{4}\right|-\frac{1}{2}=0\)
\(\Rightarrow\left|x+\frac{3}{4}\right|=0+\frac{1}{2}=\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{3}{4}=\frac{1}{2}\\x+\frac{3}{4}=-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{1}{2}-\frac{3}{4}=\frac{2}{4}-\frac{3}{4}=-\frac{1}{4}\\x=-\frac{1}{2}-\frac{3}{4}=\left(-\frac{2}{4}\right)+\left(-\frac{3}{4}\right)=-\frac{5}{4}\end{matrix}\right.\)
c/ \(\left|x-2\right|=x\)
\(\Rightarrow\left[{}\begin{matrix}x-2=x\\x-2=-x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-x=2\\x+x=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}0=2\left(vô-lý\right)\\2x=2\end{matrix}\right.\)
=> 2x = 2
=> x = 2 : 2 = 1
d/ \(\left|x-3,4\right|+\left|2,6-x\right|=0\)
Ta có: \(\left\{{}\begin{matrix}\left|x-3,4\right|\ge0\\\left|2,6-x\right|\ge0\end{matrix}\right.\)
=> Để \(\left|x-3,4\right|+\left|2,6-x\right|=0\) thì \(\left\{{}\begin{matrix}\left|x-3,4\right|=0\\\left|2,6-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3,4=0\\2,6-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0+3,4=3,4\\x=2,6-0=2,6\end{matrix}\right.\)