Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1/3 + −2/5+ 1/6 + −1/5 ≤ x < −3/4+2/7+-1/4+3/5+5/7
⇒10-12+5-6/30≤ x< -105+40-35+84+100/140
⇒-3/30≤ x <84/140
⇒-0,1≤ x < 0,6
⇒x=0
bài 3:
a, đặt \(\dfrac{x}{12}=\dfrac{y}{9}=\dfrac{z}{5}=k\)
=>x=12k,y=9k,z=5k
ta có: ayz=20=> 12k.9k.5k=20
=> (12.9.5)k^3=20
=>540.k^3=20
=>k^3=20/540=1/27
=>k=1/3
=>x=12.1/3=4
y=9.1/3=3
z=5.1/3=5/3
vậy x=4,y=3,z=5/3
b,ta có: \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}\)
A/D tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x^2}{25}=\dfrac{y^2}{49}=\dfrac{z^2}{9}=\dfrac{x^2+y^2-z^2}{25+49-9}=\dfrac{585}{65}=9\)
=>x=5.9=45
y=7.9=63
z=3*9=27
vậy x=45,y=63,z=27
a) 11(x-6)= 4x+11
<=> 11x-66= 4x+11
<=>11x-4x= 11+66
<=> 7x= 77
=>x=11
Vậy: x=11
b) \(4\dfrac{1}{3}\left(\dfrac{1}{6}-\dfrac{1}{2}\right)=\dfrac{13}{3}.\dfrac{-1}{3}=-\dfrac{13}{9}=-1\dfrac{4}{9}\)
\(\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{3}{4}\right)=\dfrac{2}{3}.\dfrac{-7}{12}=-\dfrac{7}{18}\)
Vậy: x= -1
Bài 1:
a: =>3x-3-4=0
=>3x=7
hay x=7/3
b: =>2x-2+3x+6=0
=>5x+4=0
hay x=-4/5
c: =>\(4x^2+4x-1=0\)
hay \(x\in\left\{\dfrac{-1+\sqrt{2}}{2};\dfrac{-1-\sqrt{2}}{2}\right\}\)
d: \(\Leftrightarrow3x-3+2x-4+6=0\)
=>5x+1=0
hay x=-1/5
Ta có :
\(-\dfrac{24}{-6}=\dfrac{x}{3}\)
\(\Rightarrow x=\dfrac{-24\cdot3}{-6}=12\)
=> TA CÓ :
\(\dfrac{12}{3}=\dfrac{4}{y^2}\)
\(\Rightarrow y^2=\dfrac{4\cdot3}{12}=1\)
\(\Rightarrow y=\pm1\)
=> Ta có :
\(\dfrac{4}{1}=\dfrac{z^3}{-2}\)
\(\Rightarrow z^3=\dfrac{4\cdot\left(-2\right)}{1}=-8\)
\(\Rightarrow z=-2\)
Vậy x= 12 ; y = \(\pm1\) ;z=-2
Bài 2: a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow\left(x-3\right).7=\left(x+5\right).5\)
\(\Leftrightarrow7x-21=5x+25\)
\(\Leftrightarrow7x-5x=21+25\)
\(\Leftrightarrow2x=46\)
\(\Rightarrow x=46:2=23\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(\Leftrightarrow\left(x+1\right)\left(x-1\right)=63\)
\(\Leftrightarrow x^2-1=63\)
\(\Leftrightarrow x^2=64\)
\(\Rightarrow x^2=\left(\pm8\right)^2\)
\(\Rightarrow x=8\) hoặc \(x=-8\)
2)a) \(\dfrac{x-3}{x+5}=\dfrac{5}{7}\)
\(\Leftrightarrow7\left(x-3\right)=5\left(x+5\right)\)
\(7x-21=5x+25\)
\(7x-5x+25=21\)
\(2x+25=21\)
\(2x=-4\Rightarrow x=-2\)
b) \(\dfrac{7}{x-1}=\dfrac{x+1}{9}\)
\(7.9=\left(x+1\right)\left(x-1\right)\)
\(63=x\left(x-1\right)+1\left(x-1\right)\)
\(63=x^2-x+x-1\)
\(x^2=63+1=64\)
\(x=\left\{\pm8\right\}\)
c) \(\dfrac{x+4}{20}=\dfrac{2}{x+4}\)
\(\Leftrightarrow\left(x+4\right)\left(x+4\right)=2.20=40\)
\(x\left(x+4\right)+4\left(x+4\right)=40\)
\(x^2+4x+4x+16=40\)
\(x^2+8x=40-16=24\)
\(x\left(x+8\right)=24\)
\(x\in\left\{\varnothing\right\}\)
d) \(\dfrac{x-1}{x+2}=\dfrac{x-2}{x+3}\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=\left(x-1\right)\left(x+3\right)\)
\(x\left(x-2\right)+2\left(x-2\right)=x\left(x+3\right)-1\left(x+3\right)\)
\(x^2-2x+2x-4=x^2+3x-x-3\)
\(\)\(x^2-4=x^2+2x-3\)
\(\Leftrightarrow x^2-x^2-2x+3=4\)
\(-2x+3=4\)
\(-2x=1\)
\(x=-\dfrac{1}{2}\)
a, \(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}\)
ta có: \(\dfrac{3}{x}+\dfrac{y}{3}=\dfrac{5}{6}=>\dfrac{3}{x}=\dfrac{5}{6}-\dfrac{y}{3}=\dfrac{5-2y}{6}\)
=>\(\dfrac{3}{x}=\dfrac{5-2y}{6}=>x.\left(5-2y\right)=3.6=18\)
=> x và 5-2y thuộc Ư của 18={1,-1,2,-2,3,-3,6,-6}
vì 5-2y là số lẻ=> 5-2y= +-1 hoặc 5-2y=+-3
xét bảng
5-2y | 1 | -1 | 3 | -3 |
y | 2 | 3 | 1 | 4 |
x | 18 | -18 | 6 | -6 |
vậy giá trị x,y cần tìm là: {x=18.y=2}
{x=-18.y=3}
{x=6, y=1}Ư
{x=-6,y=4}
a. \(\Rightarrow\left\{\begin{matrix}\dfrac{-10}{15}=\dfrac{x}{-9}\\\dfrac{-10}{15}=\dfrac{-8}{y}\\\dfrac{-10}{15}=\dfrac{z}{-21}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)
b. \(\Rightarrow\left\{\begin{matrix}\dfrac{-7}{6}=\dfrac{x}{18}\\\dfrac{-7}{6}=\dfrac{-98}{y}\\\dfrac{-7}{6}=\dfrac{-14}{z}\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=-21\\y=84\\z=-12\end{matrix}\right.\)
a) Ta có: \(\dfrac{-10}{15}=\dfrac{x}{-9}\)
\(\Rightarrow15x=-10.\left(-9\right)\)
\(\Rightarrow15x=90\)
\(\Rightarrow x=6\)
Khi đó: \(\dfrac{6}{-9}=\dfrac{-8}{y}=\dfrac{z}{-21}\)
\(\Rightarrow y=\dfrac{-8\left(-9\right)}{6}=12\)
và \(z=\dfrac{-8\left(-21\right)}{12}\) \(=14\)
Vậy \(\left[{}\begin{matrix}x=6\\y=12\\z=14\end{matrix}\right.\)
b) Lại có: \(\dfrac{-7}{6}=\dfrac{x}{18}\)
\(\Rightarrow6x=-7.18\)
\(\Rightarrow6x=-126\)
\(\Rightarrow x=-21\)
Khi đó \(\dfrac{-21}{18}=\dfrac{-98}{y}=\dfrac{-14}{z}\)
\(\Rightarrow y=\dfrac{-98.18}{-21}=84\)
và \(z=\dfrac{-14.84}{-98}=12\)
Vậy \(\left[{}\begin{matrix}x=-21\\y=84\\z=12\end{matrix}\right.\)
làm nhanh giúp mình với ạ
\(\dfrac{x}{2}=\dfrac{-2}{-x}\)
\(\Rightarrow x.\left(-x\right)=2.\left(-2\right)\)
\(\Rightarrow-x^2=-4\)
\(\Rightarrow x^2=4\)
\(\Rightarrow x=-2\) hoặc \(x=2\)