Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x.y.y.z.z.x= 2/3 . 0,6. 0,625= 0,25.
=> z= 0,25:2/3=0,75
=>x=0,25:0,6=0,41.
=>y= 0,25: 0,625=0,4.
Nhớ k đúngc ho mình nha bạn!!
\(tacó\)\(\left(xyz\right)^2=\frac{2}{3}\cdot0,6\cdot0,625\) \(=\frac{1}{4}\) => \(xyz=\orbr{\begin{cases}\frac{1}{2}\\-\frac{1}{2}\end{cases}}\) TH1:\(xyz=\frac{1}{2}\) \(x=\frac{1}{2}:0,6=\frac{5}{6}\) \(;y=\frac{1}{2}:0,625=0,8\) \(;z=\frac{1}{2}:\frac{2}{3}=\frac{3}{4}\) TH2:\(xyz=-\frac{1}{2}\) : \(x=-\frac{1}{2}:0,6=-\frac{5}{6}\) \(;y=-\frac{1}{2}:0,625=-0,8\) \(;z=-\frac{1}{2}:\frac{2}{3}=-\frac{3}{4}\) Vậy TH1:\(x=\frac{5}{6};y=0,8;z=\frac{3}{4}\) TH2:\(x=-\frac{5}{6};y=-0,8;z=-\frac{3}{4}\)
\(\Rightarrow xy.yz.xz=\left(xyz\right)^2=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}=\frac{1}{25}\Rightarrow xyz=\frac{1}{5};\frac{-1}{5}\)
xét xyz=-1/5=>x=1/2;y=2/3;z=-3/5
xét xyz=1/5=>x=-1/2;y=-2/3;z=3/5
Vậy (x;y;z)=(1/2;2/3;-3/5);(-1/2;-2/3;3/5)
Ta có :
\(xy.yz.zx=\frac{1}{3}.\frac{-2}{5}.\frac{-3}{10}\)
\(\Leftrightarrow\)\(x^2y^2z^2=\frac{3}{75}\)
\(\Leftrightarrow\)\(x^2y^2z^2=\frac{9}{225}\)
\(\Leftrightarrow\)\(\left(xyz\right)^2=\left(\frac{3}{15}\right)^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}xyz=\frac{3}{15}\\xyz=\frac{-3}{15}\end{cases}}\)
* Nếu \(xyz=\frac{3}{15}\)
\(\Rightarrow\)\(\hept{\begin{cases}x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\\y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\\z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\end{cases}}\)
Vậy \(x=\frac{-3}{2}\)\(;\)\(y=-2\) và \(z=\frac{9}{5}\)
Chúc bạn học tốt ~
Bạn êi tại olm bị lỗi chỗ \(\hept{\begin{cases}\\\\\end{cases}}\) nên mình trình bày lại nhá bạn
\(x=\frac{xyz}{yz}=\frac{\frac{3}{5}}{\frac{-2}{5}}=\frac{3}{5}.\frac{-5}{2}=\frac{-3}{2}\)
\(y=\frac{xyz}{zx}=\frac{\frac{3}{5}}{\frac{-3}{10}}=\frac{3}{5}.\frac{-10}{3}=-2\)
\(z=\frac{xyz}{xy}=\frac{\frac{3}{5}}{\frac{1}{3}}=\frac{3}{5}.3=\frac{9}{5}\)
Vậy ...
Chúc bạn học tốt ~
Theo bài ra: x.y=\(\frac{3}{5}\)(1)
y.z=\(\frac{4}{5}\)(2)
z.x=\(\frac{3}{4}\)(3)
Ta có: x.y.y.z.z.x=\(\frac{3}{5}.\frac{4}{5}.\frac{3}{4}\)\(\Leftrightarrow\)(x.y.z)\(^2\)=\(\frac{9}{25}\)\(\Rightarrow\)x.y.z=\(\frac{3}{5}\)
Từ (1), ta có:x.y=\(\frac{3}{5}\), mà x.y.z=\(\frac{3}{5}\)\(\Rightarrow\)z=1
Từ (2), ta có:y.z=\(\frac{4}{5}\), mà x.y.z=\(\frac{3}{5}\)\(\Rightarrow\)x=\(\frac{3}{4}\)
Ta có: x.y.z=\(\frac{3}{5}\), mà z=1;x=\(\frac{3}{4}\)\(\Rightarrow\)y=\(\frac{4}{5}\)
Ta có x.y.y.z.z.x = 3/5.4/5.3/4
(=) (x.yz)^2 = 9/25
mà (x.yz)^2 = (3/5)^2
=> x.y.z =3/5
Tới đây bạn chia cho các đẳng thức đã cho và tìm được ra x;y;z
Vậy z=1
x=3/4
y=4/5
a,\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\Leftrightarrow\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)=3
\(\left\{{}\begin{matrix}xy=\dfrac{3}{5}\\yz=\dfrac{4}{5}\\zx=\dfrac{3}{4}\end{matrix}\right.\Rightarrow x^2y^2z^2=\dfrac{3}{5}.\dfrac{4}{5}.\dfrac{3}{4}=\dfrac{9}{25}\)
\(\Rightarrow xyz=\pm\dfrac{3}{5}\)
+) \(xyz=\dfrac{3}{5}\Rightarrow\left\{{}\begin{matrix}z=1\\x=\dfrac{3}{4}\\y=\dfrac{4}{5}\end{matrix}\right.\)
+) \(xyz=\dfrac{-3}{5}\Rightarrow\left\{{}\begin{matrix}z=-1\\x=\dfrac{-3}{4}\\y=\dfrac{-4}{5}\end{matrix}\right.\)
Vậy...
\(\text{Ta có : }xy=\dfrac{3}{5}\\ yz=\dfrac{4}{5}\\ zx=\dfrac{4}{4}\\ \Rightarrow xy\cdot yz\cdot zx=\dfrac{3}{5}\cdot\dfrac{4}{5}\cdot\dfrac{3}{4}\\ \Rightarrow x^2\cdot y^2\cdot z^2=\dfrac{9}{25}\Rightarrow\left(xyz\right)^2=\dfrac{9}{25}\\ \Rightarrow xyz=\dfrac{-3}{5}\text{hoặc : }\\ xyz=\dfrac{3}{5}\)
\(\text{+) Xét }xyz=-\dfrac{3}{5}\Leftrightarrow\left\{{}\begin{matrix}x\cdot\left(yz\right)=-\dfrac{3}{5}\\y\cdot\left(xz\right)=-\dfrac{3}{5}\\z\cdot\left(xy\right)=-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{4}{5}=-\dfrac{3}{5}\\y\cdot\dfrac{3}{4}=-\dfrac{3}{5}\\z\cdot\dfrac{3}{5}=-\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=-\dfrac{4}{5}\\z=-1\end{matrix}\right.\)
\(\text{+) Xét }xyz=\dfrac{3}{5}\Leftrightarrow\left\{{}\begin{matrix}x\cdot\left(yz\right)=\dfrac{3}{5}\\y\cdot\left(xz\right)=\dfrac{3}{5}\\z\cdot\left(xy\right)=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\cdot\dfrac{4}{5}=\dfrac{3}{5}\\y\cdot\dfrac{3}{4}=\dfrac{3}{5}\\z\cdot\dfrac{3}{5}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{4}{5}\\z=1\end{matrix}\right.\)
Vậy \(x;y;z=-\dfrac{3}{4};-\dfrac{4}{5};-1\) hoặc \(x;y;z=\dfrac{3}{4};\dfrac{3}{5};1\)
x^2 * y^2 * z^2 = (xyz)^2 = [1/3 * (-2/5) * (-3/10)]^2 = (1/25)^2
=> xyz = 1/25
=> z= xyz : xy = 1/25 : 1/3 = 3/25
=> x = xyz : yz = 1/25 : (-2/5) = -1/10
=> y = xyz : xz = 1/25 : (-3/10) = -2/15