\(\in\)Z+ sao cho :

               3x + 1 = ( y + 1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)

\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{1}{3}\)

\(\Leftrightarrow\frac{y+x}{xy}=\frac{1}{3}\)

\(\Leftrightarrow3\left(x+y\right)=xy\)

\(\Leftrightarrow3x+3y-xy=0\)

\(\Leftrightarrow x\left(3-y\right)+3y=0\)

\(\Leftrightarrow x\left(3-y\right)+3y-9=9\)

\(\Leftrightarrow x\left(3-y\right)-3\left(3-y\right)=9\)

\(\Leftrightarrow\left(x-3\right)\left(3-y\right)=9\)

=>x-3 và 3-y thuộc Ư(9)={1;3;9} (với x,y thuộc Z+)

Xét x-3=1 =>x=4 <=>3-y=9 => y=-6

Xét x-3=3 =>x=6 <=>3-y=3 =>y=0

Xét x-3=9 =>x=12 <=>3-y=1 =>y=2

Vậy....

2 tháng 9 2016

giúp tớ voiw

14 tháng 8 2017

Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+x\right)}{x+y+z}=2\)(theo tính chất của DTSBN)

Suy ra:\(\dfrac{1}{x+y+z}=2\)=>x+y+z=\(\dfrac{1}{2}\)

=>y+z=\(\dfrac{1}{2}\)-x

Tương tự, ta có được:

x+z=\(\dfrac{1}{2}-y\)

x+y=\(\dfrac{1}{2}-z\)

Thay các kết quả vừa tìm được, ta có:

\(\dfrac{0,5-x+1}{x}=\dfrac{0,5-y+2}{y}\dfrac{0,5-z-3}{z}=2\)=>\(\dfrac{1,5-x}{x}=\dfrac{2,5-y}{y}=\dfrac{-2,5-z}{z}=2\)

=>x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)

Thay x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)vào biểu thức A, ta có:

A=2018.\(\dfrac{1}{2}\)+\(\left(\dfrac{5}{6}\right)^{2017}\)+\(\left(\dfrac{-5}{6}\right)^{2017}\)

=>A=1009+\(\left[\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\right]\)

=>A=1009+0

=>A=1009

Vậy giá trị của biểu thức A là 1009

14 tháng 8 2017

Thanks crush nka !!

21 tháng 8 2017

Ta có :\(y^2=xz\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}\)(1)

\(x^2=yt\Rightarrow\dfrac{x}{y}=\dfrac{t}{x}\) (2)

Từ (1) và (2) , ta suy ra :\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)

Đặt \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\)\(\)(3)

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\Rightarrow k^3=\dfrac{x^3}{y^3}=\dfrac{y^3}{z^3}=\dfrac{t^3}{x^3}=\dfrac{x^3+y^3+t^3}{y^3+z^3+x^3}\)

\(\Rightarrow\dfrac{t^3}{x^3}=\dfrac{x^3+y^3+t^3}{y^3+z^3+x^3}\)

\(\Rightarrow\dfrac{x^3}{t^3}=\dfrac{x^3+y^3+z^3}{x^3+y^3+t^3}\)

\(\Rightarrow\dfrac{x^3+y^3+z^3}{x^3+y^3+t^3}=\left(\dfrac{x}{t}\right)^3\)

Đề có sai không vậy bạn

21 tháng 8 2017

\(\left\{{}\begin{matrix}y^2=xz\\x^2=yt\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{y}{z}\\\dfrac{x}{y}=\dfrac{t}{x}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)

Đặt:

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=yk\\y=zk\\t=xk\end{matrix}\right.\)

Thay vào tính :v

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

1.

\(-3x^5y^4+3x^2y^3-7x^2y^3+5x^5y^4\)

\(=(-3x^5y^4+5x^5y^4)+(3x^2y^3-7x^2y^3)\)

\(=2x^5y^4-4x^2y^3\)

2.

\(\frac{1}{2}x^4y-\frac{3}{2}x^3y^4+\frac{5}{3}x^4y-x^3y^4\)

\(=(\frac{1}{2}x^4y+\frac{5}{3}x^4y)-(\frac{3}{2}x^3y^4+x^3y^4)\)

\(=\frac{13}{6}x^4y-\frac{5}{2}x^3y^4\)

3.

\(5x-7xy^2+3x-\frac{1}{2}xy^2\)

\(=(5x+3x)-(7xy^2+\frac{1}{2}xy^2)\)

\(=8x-\frac{15}{2}xy^2\)

AH
Akai Haruma
Giáo viên
19 tháng 3 2019

4.

\(\frac{-1}{5}x^4y^3+\frac{3}{4}x^2y-\frac{1}{2}x^2y+x^4y^3\)

\(=(\frac{-1}{5}x^4y^3+x^4y^3)+(\frac{3}{4}x^2y-\frac{1}{2}x^2y)\)

\(=\frac{4}{5}x^4y^3+\frac{1}{4}x^2y\)

5.

\(\frac{7}{4}x^5y^7-\frac{3}{2}x^2y^6+\frac{1}{5}x^5y^7+\frac{2}{3}x^2y^6\)

\(=(\frac{7}{4}x^5y^7+\frac{1}{5}x^5y^7)+(-\frac{3}{2}x^2y^6+\frac{2}{3}x^2y^6)\)

\(=\frac{39}{20}x^5y^7-\frac{5}{6}x^2y^6\)

6.

\(\frac{1}{3}x^2y^5(-\frac{3}{5}x^3y)+x^5y^6=(\frac{1}{3}.\frac{-3}{5})(x^2.x^3)(y^5.y)+x^5y^6\)

\(=\frac{-1}{5}x^5y^6+x^5y^6=\frac{4}{5}x^5y^6\)

13 tháng 12 2018

A = \(\left(x+3\right)^2+|y-5|+5\)

∀ x thì \(\left(x+3\right)^2\ge0\)

\(|y-5|\ge0\)

\(\Rightarrow\left(x+3\right)^2+|y-5|+5\ge0+0+5\)

\(\Rightarrow A\ge5\)

Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+3\right)^2=0\\|y-5|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)

Vậy GTNN của A = 5 \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)

Mấy câu sau bạn áp dụng tương tự nhé!!!

13 tháng 12 2018

Giúp mình với mọi người ơi!!! huhu

a)\(\left|\frac{1}{4}+x\right|=\frac{5}{6}\)

=> Có hai trường hợp

TH1: \(\frac{1}{4}+x=\frac{5}{6}\)                                                 TH2: \(\frac{1}{4}+x=-\frac{5}{6}\)

<=> \(x=\frac{5}{6}-\frac{1}{4}\)                                                <=> \(x=-\frac{5}{6}-\frac{1}{4}\)

<=> \(x=\frac{10}{12}-\frac{3}{12}\)                                            <=> \(x=-\left(\frac{10}{12}+\frac{3}{12}\right)\)

<=> \(x=\frac{7}{12}\)                                                        <=> \(x=-1\frac{1}{12}\)

Vậy: \(x=\frac{7}{12}\) hoặc \(x=-1\frac{1}{12}\)

b) \(A\left(x\right)=5x^2-3x-16\)

Thay \(x=-2\) vào đa thức A(x), ta có:

\(A\left(-2\right)=5\cdot\left(-2\right)^2-3\cdot\left(-2\right)-16\)

\(A\left(-2\right)=5\cdot4-3\cdot\left(-2\right)-16\)

\(A\left(-2\right)=20+6-16\)

\(A\left(-2\right)=10\)

Vậy giá trị của đa thức A(x) tại x =-2 là 10

c) \(A=4x^2y^2\left(-2x^3y^2\right)\)

\(A=\left[4\cdot\left(-2\right)\right]\left(x^2\cdot x^3\right)\left(y^2\cdot y^2\right)\)

\(A=\left(-8\right)x^5y^4\)

Đơn thức A có:

- Hệ số là: -8

- Phần biến là: \(x^5y^4\)

- Bậc là: 9

21 tháng 4 2017

a)

1/4+x=5/6 hoặc -5/6

1/4+x=5/6 suy ra x=7/12

1/4+x=-5/6 suy ra x=-13/12

b) thay x=-2 vào

suy ra A=5.(-2)2-3.(-2)-16

=10

c) A=-8x5y4. Hệ số -8. Biến x5y4. Bậc 9

Bài dễ sao ko động não tí đi