\(2x\cdot\left(3y-2\right)+\left(3y+2\right)=-55\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

Câu 1 :
 A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
 B = \(\frac{1}{2}\).  \(\frac{2}{3}\).  \(\frac{3}{4}\)+...+  \(\frac{2010}{2011}\).  \(\frac{2011}{2012}\)\(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)=  \(\frac{1}{2012}\)
Câu 2 :
 a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=>  \(3y-2;2x+1\in\: UC\left(-55\right)\)
=>  \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng 

BẢNG TÌM x;y
\(2x+1\) 1-1 5-511-1155-55
\(x\) 0-1 2-35-627-28
\(3y-2\)-5555-1111-55-11
\(3y\)-5357-913-3713
\(y\)\(\frac{-53}{3}\)(loại)19(chọn)-3(chọn)\(\frac{13}{3}\)(loại)-1(chọn)\(\frac{7}{3}\)(loại)\(\frac{1}{3}\)(loại)1(chọn)


\(\Leftrightarrow\)Những cặp (x;y) tìm được là : 
(-1;19)  ;   (2;-3)   ;    (5;-1)    ;    (-28;1)
b) Ta đặt vế đó là A
Ta xét A :   \(\frac{1}{4^2}\)<  \(\frac{1}{2.4}\)
                  \(\frac{1}{6^2}\)<  \(\frac{1}{4.6}\)
                  \(\frac{1}{8^2}\)<  \(\frac{1}{6.8}\)
                          ...
                 \(\frac{1}{\left(2n\right)^2}\)<  \(\frac{1}{\left(2n-2\right).2n}\)

  \(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+  \(\frac{1}{4.6}\)+...+  \(\frac{1}{\left(2n-2\right).2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+  \(\frac{2}{4.6}\)+...+  \(\frac{2}{\left(2n-2\right).2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{4}\)+  \(\frac{1}{4}\)-  \(\frac{1}{6}\)+...+  \(\frac{1}{2n-2}\)-  \(\frac{1}{2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{2n}\)) = \(\frac{1}{2}\).  \(\frac{1}{2}\)-  \(\frac{1}{2}\).  \(\frac{1}{2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{4}\)-  \(\frac{1}{4n}\)<  \(\frac{1}{4}\) ( Vì n \(\in\)N )
  \(\Leftrightarrow\)A <  \(\frac{1}{4}\)( đpcm ) .

29 tháng 4 2017

Bạn Phùng Quang Thịnh làm đúng hết rồi 

25 tháng 6 2017

a, \(2\left|2x-3\right|=\dfrac{1}{2}\)

\(\Rightarrow\left|2x-3\right|=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}2x-3=\dfrac{1}{4}\\2x-3=-\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{8}\\x=\dfrac{11}{8}\end{matrix}\right.\)

b, \(7,5-3\left|5-2x\right|=-4,5\)

\(\Rightarrow3\left|5-2x\right|=12\)

\(\Rightarrow\left|5-2x\right|=4\)

\(\Rightarrow\left\{{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)

c, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left|3x-4\right|\ge0;\left|3y+5\right|\ge0\)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\) với mọi giá trị của \(x;y\in R\).

Để \(\left|3x-4\right|+\left|3y+5\right|=0\) thì

\(\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y+5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\)

Vậy.............

Chúc bạn học tốt!!!

25 tháng 6 2017

\(\left[{}\begin{matrix}\\\end{matrix}\right.\)cái này là hoặc

\(\left\{{}\begin{matrix}\\\end{matrix}\right.\) cái này là và

13 tháng 2 2018

\(\left(x+1\right)\left(y-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+1=0\\y-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0-1\\y=0+2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy x = - 1 ; y = 2

26 tháng 11 2016

Câu b :

Ta có 5x+7 =5(x-2)+17

Vì 5(x-2) chia hết cho x-2

=> để 5x+7 chia hết cho x-2 thì 17 phải chia hết cho x-2

=>x-2 thuộc tập hợp ước cua 17

=>x-2=1;-1;17;-17

=>x=3;1;19;-15

Mà x thuộc tập hợp số tự nhiên nên ta chọn x=3;1;19

26 tháng 11 2016

soyeon_Tiểubàng giải HELP ME

Nguyễn Huy Tú

Silver bullet

Lê Nguyên Hạo

15 tháng 9 2015

x.(y-1)-3y+3=0

=>x.(y-1)-3.(y-1)=0

=>(y-1)(x-3)=0

=>y-1=0 và x-3=0

=>y=1 và x=3

15 tháng 9 2015

Cảm ơn Triều nhé thấy rồi