Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2-113=31\\ \Leftrightarrow x^2=144\\ \Leftrightarrow x=\pm12\\ Vay...\\ b,\sqrt{x+2,29}=2.3\\ \Leftrightarrow x+2,29=6^2\\ x=36-2,29=33,71\\ c,x^4=256\\ \Leftrightarrow x=\pm4\\ Vay...\\ d,\left(\sqrt{x}-1\right)^2=0,5625\\ \Leftrightarrow\sqrt{x}-1\in\left\{-0,75;0,75\right\}\\ \Leftrightarrow\sqrt{x}\in\left\{0,25;1,75\right\}\\ Vay...\\ e,2\sqrt{x}-x=0\\ \Leftrightarrow\sqrt{x}\left(2-\sqrt{x}\right)=0\\ \Leftrightarrow\sqrt{x}=0hoac2-\sqrt{x}=0\\ \Leftrightarrow x=0hoacx=4\\ f,x+\sqrt{x}=0\\ \Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)=0\\ \Leftrightarrow x=0hoacx=1\)
a. x2−113=31
=> x2=144
=> x2=\(\sqrt{144}\)
=> x=\(\pm12\)
c.x4=256
=> x4=44
=> x=\(\pm4\)
a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)
=>x+1=0
hay x=-1
b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)
=>x=15
1.Tìm x, biết:
x/3=y/5
Theo tính chất dãy tỉ số bằng nhau ta có:
x+y/3+5= 16/8=2
=>x=6; y=10
2.Cho a+5/a−5=b+6/b−6(a≠5;b≠6)
CMR: ab=56
Giải:
ta có a+5/a-5=b+6/b-6 =>a+5/b+6=a-5/b-6 (*)
=> a+5+a-5/b+6+b-6=2a/2b=a/b (1)
Lại có: (*)=a+5-a+5/b+6-b+6=10/12=5/6 (2)
Từ 1 và 2 suy ra a/b=5/6 (đpcm)
Cái này dễ lắm. Mình giải luôn nhé!
a) \(\left[{}\begin{matrix}\dfrac{1}{7}x-\dfrac{2}{7}=0\Leftrightarrow x=\dfrac{2}{7}:\dfrac{1}{7}\Leftrightarrow x=2\\-\dfrac{1}{5}x+\dfrac{3}{5}=0\Leftrightarrow x=-\dfrac{3}{5}:\left(-\dfrac{1}{5}\right)\Leftrightarrow x=3\\\dfrac{1}{3}x+\dfrac{4}{3}=0\Leftrightarrow x=-\dfrac{4}{3}:\dfrac{1}{3}\Leftrightarrow x=-4\end{matrix}\right.\)
Vậy x=2 hoặc x=3 hoặc x=-4
b)\(x\left(\dfrac{1}{6}+\dfrac{1}{10}-\dfrac{4}{15}\right)+1=0\)
\(x.0+1=0\)
\(1=0\) ( vô lí)
Vậy không có giá trị của x nào thỏa mãn
a/ \(\left|x+\dfrac{3}{4}\right|-\dfrac{1}{3}=0\)
\(\Leftrightarrow\left|x+\dfrac{3}{4}\right|=\dfrac{1}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{3}{4}=\dfrac{1}{3}\\x+\dfrac{3}{4}=-\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{12}\\x=-\dfrac{13}{12}\end{matrix}\right.\)
Vậy ..............
b, \(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{13}{39}< \dfrac{13}{38}\)
\(\Leftrightarrow\dfrac{13}{38}>\dfrac{-12}{-37}\)
a)\(\text{|}x+\dfrac{3}{4}\text{|}-\dfrac{1}{3}=0\)
=>\(\text{|}x+\dfrac{3}{4}\text{|}=\dfrac{1}{3}\)
=>\(x+\dfrac{3}{4}=-\dfrac{1}{3}\)hoặc\(x+\dfrac{3}{4}=\dfrac{1}{3}\)
=>\(x=-\dfrac{13}{12}\)hoặc\(x=-\dfrac{5}{12}\)
Vậy...
b)\(\dfrac{13}{38}\) và \(\dfrac{-12}{-37}\)
Ta có:\(\dfrac{-12}{-37}=\dfrac{12}{37}< \dfrac{12}{36}=\dfrac{1}{3}=\dfrac{13}{39}< \dfrac{13}{38}\)
=>\(\dfrac{13}{38}>\dfrac{-12}{-37}\)
a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)
\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)
b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)
= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)
= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)
\(\dfrac{51}{2.50}=\dfrac{51}{100}\)
Lời giải:
a)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)
Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)
Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)
b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:
\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)
\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)
\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)
\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)
\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)
Bài1:
Giải 1 câu các câu sau tương tự
1.A=|x|+1
Với mọi x thì |x|>=0
=>|x|+1 >=1
Hay A>=1
Để A=1 thì |x|=0
=>x=0
Vậy...
Bài2:
1.A=−|x−2|+7
Với mọi x thì −|x−2|nhỏ hơn bằng 0
=>−|x−2|+7 nhỏ hơn bằng 7
Hay A nhỏ hơn bằng 7
Để A=7 thì |x−2|=0
=>x-2=0=>x=2
Các câu sau tương tự
1) \(A=\left|x\right|+1\ge1\forall x\)
\(\Rightarrow GTNN\) của A là 1 khi \(\left|x\right|=0\Leftrightarrow x=0\)
vậy GTNN của A là 1 khi \(x=0\)
2) \(B=\left|x+1\right|-\dfrac{7}{3}\ge-\dfrac{7}{3}\forall x\)
\(\Rightarrow GTNN\) của B là \(-\dfrac{7}{3}\) khi \(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
vậy GTNN của B là \(-\dfrac{7}{3}\) khi \(x=-1\)
3) \(C=\dfrac{2}{5}\left|2x+5\right|-2\ge-2\forall x\)
\(\Rightarrow GTNN\) của C là -2 khi \(\left|2x+5\right|=0\Leftrightarrow2x+5=0\Leftrightarrow2x=-5\Leftrightarrow x=-\dfrac{5}{2}\)
vậy GTNN của C là -2 khi \(x=-\dfrac{5}{2}\)
\(a,\left|x\right|+\left|x+2\right|=0\)
Với mọi x thì \(\left|x\right|\ge0;\left|x+2\right|\ge0\)
=>\(\left|x\right|+\left|x+2\right|\ge0\) với mọi x
Để \(\left|x\right|+\left|x+2\right|=0thì\)
\(x=0vàx=-2\)
=>\(x\in\varnothing\)
Vậy......
\(b,\left|x\left(x^2-\dfrac{5}{4}\right)\right|=0\\ \Leftrightarrow x\left(x^2-\dfrac{5}{4}\right)=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=0\\x^2-\dfrac{5}{4}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=\pm\dfrac{\sqrt{5}}{4}\end{matrix}\right.\)
Vậy..
\(a,\left|x\right|+\left|x+2\right|=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x\right|=0\\\left|x+2\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\x=\left(-2\right)\end{matrix}\right.\)
Mà \(0\ne\left(-2\right)\Rightarrow x\in\varnothing\)
Vậy \(x\in\varnothing\)
a) \(\dfrac{-7}{12}-\left(\dfrac{3}{5}+x\right)=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-7}{12}-\dfrac{3}{5}-x=\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-71}{60}-x=\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{-71}{60}-\dfrac{3}{4}\)
\(\Leftrightarrow x=\dfrac{-29}{15}\)
Vậy \(x=\dfrac{-29}{15}\)
b) \(2017x\left(x-\dfrac{2006}{7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017x=0\\x-\dfrac{2006}{7}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2006}{7}\end{matrix}\right.\)
Vậy \(x=0\) ; \(x=\dfrac{2006}{7}\)
c) \(5\left(x-2\right)+3x\left(2-x\right)=0\)
\(\Leftrightarrow5\left(x-2\right)-3x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(5-3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\5-3x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{5}{3}\end{matrix}\right.\)
Vậy \(x=2\) ; \(x=\dfrac{5}{3}\)
thánh trở lại rồi ak