\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\cdot\left(x+1\right)}=\frac{2}{9...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2016

2.[1/42+1/56+1/72+...+1/x.(x+1)]=2/9

1/6.7+1/7.8+1/8.9+....+1/x.(x+1)=1/9

1/6-1/7+1/7-1/8+1/8-1/9+.....+1/x-1/x+1=1/9

1/6-1/x+1=1/9

1:(x+1)=1/6-1/9

x+1=1:(1/18)

x+1=18

x=18-1

x=17

Vậy x=17

Chúc em học tốt

Ủng hộ anh nha^^

26 tháng 6 2016

2/42 + 2/56 + 2/72 + ... + 2/x.(x+1) = 2/9

2.[1/42 + 1/56 + 1/72 + ... + 1/x.(x+1)] = 2/9

1/6.7 + 1/7.8 + 1/8.9 + ... + 1/x.(x+1) = 2/9 : 2

1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + ... + 1/x - 1/x+1 = 2/9 . 1/2

1/6 - 1/x+1 = 1/9

1/x+1 = 1/6 - 1/9

1/x+1 = 6/36 - 4/36

1/x+1 = 2/36 = 1/18

=> x+1=18

=> x=18-1

=> x=17

Vậy x=17

26 tháng 6 2016

ta xét VT=\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=2\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{x\left(x+1\right)}\right)\)

                =\(2\left(\frac{7-6}{6\cdot7}+\frac{8-7}{7\cdot8}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)

                =\(2\left(\frac{1}{6}-\frac{1}{x+1}\right)\)= 2*1/9

=> \(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

<=> \(\frac{1}{x+1}=\frac{1}{18}\)

<=> x+1=18

=> x=17

27 tháng 6 2016

tớ làm khác nhưng kết quả thì giống

23 tháng 4 2016

b)

\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)

\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)

\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(x-2=8\)

=> x = 10

23 tháng 4 2016

a) 

\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)

\(A=\frac{1}{2016}\)

29 tháng 7 2016

\(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)

\(x-10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)=\frac{3}{11}\)

\(x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)

\(x-10.\frac{4}{55}=\frac{3}{11}\)

\(x=1\)

2 tháng 5 2016

x thuộc Z

2 tháng 5 2016

\(\left(x-2\right):\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)

\(\left(x-2\right):\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)

\(\left(x-2\right):\frac{2}{9}=\frac{16}{9}\)

\(x-2=\frac{32}{91}\)

\(x=\frac{32}{91}+2\)

\(x=\frac{212}{91}\)

29 tháng 3 2018

Đặt \(A=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\)

=> \(A=\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x\left(x+1\right)}\)

\(\frac{A}{2}=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\)

=> \(\frac{A}{2}=\frac{1}{6}-\frac{1}{x+1}=\frac{x+1-6}{6\left(x+1\right)}=\frac{x-5}{6\left(x+1\right)}\) => \(A=\frac{x-5}{3\left(x+1\right)}=\frac{2}{9}\)

<=> 3(x-5)=2(x+1)  <=> 3x-15=2x+2  <=> x=17

Đáp số: x=17

11 tháng 5 2018

a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)

=> \(A=\frac{9}{10}\)

b/ \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}\)

=> \(A=1+\frac{7}{n-5}\)

Để A nguyên => 7 chia hết cho n-5 => n-5=(-7; -1; 1; 7)

=> n=(-2; 4, 6, 8)

\(\frac{x-2}{12}+\frac{x-2}{20}+\frac{x-2}{30}+\frac{x-2}{42}+\frac{x-2}{56}+\frac{x-2}{72}=\frac{16}{9}\)

\(\left(x-2\right)\cdot\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)

\(\left(x-2\right)\cdot\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)

\(\left(x-2\right)\cdot\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)

\(\left(x-2\right)\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)

\(\left(x-2\right)\cdot\left(\frac{3}{9}-\frac{1}{9}\right)=\frac{16}{9}\)

\(\left(x-2\right)\cdot\frac{2}{9}=\frac{16}{9}\)

\(x-2=\frac{16}{9}:\frac{2}{9}\)

\(x-2=\frac{16}{9}\cdot\frac{9}{2}\)

\(x-2=8\)

\(x=8+2\)

\(x=10\)

Vậy \(x=10\)

17 tháng 4 2020

\(\left(x-2\right)\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)=\)\(=\frac{16}{9}\)

\(\left(x-2\right)\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)

\(\left(x-2\right)\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)

\(\left(x-2\right)\left(\frac{2}{9}\right)=\frac{16}{9}\)

2(x-2)=16

x-2=8

x=10
 

20 tháng 5 2018

a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)

Do đó \(x\in\left\{0;1;2\right\}\)

25 tháng 7 2018

b)

\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)

\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)