Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta xét VT=\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\left(x+1\right)}=2\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{x\left(x+1\right)}\right)\)
=\(2\left(\frac{7-6}{6\cdot7}+\frac{8-7}{7\cdot8}+...+\frac{\left(x+1\right)-x}{x\left(x+1\right)}\right)=2\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}\right)\)
=\(2\left(\frac{1}{6}-\frac{1}{x+1}\right)\)= 2*1/9
=> \(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
<=> \(\frac{1}{x+1}=\frac{1}{18}\)
<=> x+1=18
=> x=17
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
\(x-\frac{20}{11.13}-\frac{20}{13.15}-\frac{20}{15.17}-...-\frac{20}{53.55}=\frac{3}{11}\)
\(x-10\left(\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{53.55}\right)=\frac{3}{11}\)
\(x-10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{53}-\frac{1}{55}\right)=\frac{3}{11}\)
\(x-10.\frac{4}{55}=\frac{3}{11}\)
\(x=1\)
\(\left(x-2\right):\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\left(x-2\right):\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2\right):\frac{2}{9}=\frac{16}{9}\)
\(x-2=\frac{32}{91}\)
\(x=\frac{32}{91}+2\)
\(x=\frac{212}{91}\)
Đặt \(A=\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{x\left(x+1\right)}\)
=> \(A=\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{x\left(x+1\right)}\)
\(\frac{A}{2}=\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}\)
=> \(\frac{A}{2}=\frac{1}{6}-\frac{1}{x+1}=\frac{x+1-6}{6\left(x+1\right)}=\frac{x-5}{6\left(x+1\right)}\) => \(A=\frac{x-5}{3\left(x+1\right)}=\frac{2}{9}\)
<=> 3(x-5)=2(x+1) <=> 3x-15=2x+2 <=> x=17
Đáp số: x=17
a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)
=> \(A=\frac{9}{10}\)
b/ \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}\)
=> \(A=1+\frac{7}{n-5}\)
Để A nguyên => 7 chia hết cho n-5 => n-5=(-7; -1; 1; 7)
=> n=(-2; 4, 6, 8)
\(\frac{x-2}{12}+\frac{x-2}{20}+\frac{x-2}{30}+\frac{x-2}{42}+\frac{x-2}{56}+\frac{x-2}{72}=\frac{16}{9}\)
\(\left(x-2\right)\cdot\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\right)=\frac{16}{9}\)
\(\left(x-2\right)\cdot\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(\left(x-2\right)\cdot\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2\right)\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2\right)\cdot\left(\frac{3}{9}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2\right)\cdot\frac{2}{9}=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\frac{2}{9}\)
\(x-2=\frac{16}{9}\cdot\frac{9}{2}\)
\(x-2=8\)
\(x=8+2\)
\(x=10\)
Vậy \(x=10\)
\(\left(x-2\right)\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\right)=\)\(=\frac{16}{9}\)
\(\left(x-2\right)\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}+\frac{1}{8}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2\right)\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(\left(x-2\right)\left(\frac{2}{9}\right)=\frac{16}{9}\)
2(x-2)=16
x-2=8
x=10
a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
Do đó \(x\in\left\{0;1;2\right\}\)
b)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)
\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)
2.[1/42+1/56+1/72+...+1/x.(x+1)]=2/9
1/6.7+1/7.8+1/8.9+....+1/x.(x+1)=1/9
1/6-1/7+1/7-1/8+1/8-1/9+.....+1/x-1/x+1=1/9
1/6-1/x+1=1/9
1:(x+1)=1/6-1/9
x+1=1:(1/18)
x+1=18
x=18-1
x=17
Vậy x=17
Chúc em học tốt
Ủng hộ anh nha^^
2/42 + 2/56 + 2/72 + ... + 2/x.(x+1) = 2/9
2.[1/42 + 1/56 + 1/72 + ... + 1/x.(x+1)] = 2/9
1/6.7 + 1/7.8 + 1/8.9 + ... + 1/x.(x+1) = 2/9 : 2
1/6 - 1/7 + 1/7 - 1/8 + 1/8 - 1/9 + ... + 1/x - 1/x+1 = 2/9 . 1/2
1/6 - 1/x+1 = 1/9
1/x+1 = 1/6 - 1/9
1/x+1 = 6/36 - 4/36
1/x+1 = 2/36 = 1/18
=> x+1=18
=> x=18-1
=> x=17
Vậy x=17