Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
(1 + x)3 + (1 - x)3 - 6x(x + 1) = 6
<=> x3 + 3x2 + 3x + 1 - x3 + 3x2 - 3x + 1 - 6x2 - 6x = 6
<=> -6x + 2 = 6
<=> -6x = 6 - 2
<=> -6x = 4
<=> x = -4/6 = -2/3
Bài 3:
a) (7x - 2x)(2x - 1)(x + 3) = 0
<=> 10x3 + 25x2 - 15x = 0
<=> 5x(2x - 1)(x + 3) = 0
<=> 5x = 0 hoặc 2x - 1 = 0 hoặc x + 3 = 0
<=> x = 0 hoặc x = 1/2 hoặc x = -3
b) (4x - 1)(x - 3) - (x - 3)(5x + 2) = 0
<=> 4x2 - 13x + 3 - 5x2 + 13x + 6 = 0
<=> -x2 + 9 = 0
<=> -x2 = -9
<=> x2 = 9
<=> x = +-3
c) (x + 4)(5x + 9) - x2 + 16 = 0
<=> 5x2 + 9x + 20x + 36 - x2 + 16 = 0
<=> 4x2 + 29x + 52 = 0
<=> 4x2 + 13x + 16x + 52 = 0
<=> 4x(x + 4) + 13(x + 4) = 0
<=> (4x + 13)(x + 4) = 0
<=> 4x + 13 = 0 hoặc x + 4 = 0
<=> x = -13/4 hoặc x = -4
a: P(x)-Q(x)+H(x)
=x^3-2x^2+3x+1-x^3-x+1+2x^2-1
=2x+1
b: P(x)-Q(x)+H(x)=0
=>2x+1=0
=>x=-1/2
\(x^2+y^2+4z^2+2x+2y+4z+3=0\)
\(\Leftrightarrow\)\(\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+\left(4z^2+4z+1\right)=0\)
\(\Leftrightarrow\)\(\left(x+1\right)^2+\left(y+1\right)^2+\left(2z+1\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}x+1=0\\y+1=0\\2z+1=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=-1\\y=-1\\z=-\frac{1}{2}\end{cases}}\)
Vậy....
\(\frac{\left(2x^2+2x\right)\left(x-3\right)^2}{x\left(x^2-9\right)\left(x+1\right)}.ĐKXD:x\ne3,x\ne0,x\ne-1\)
\(=\frac{2x\left(x+1\right)\left(x-3\right)\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)\left(x+1\right)}=\frac{2x\left(x-3\right)}{x\left(x+3\right)}\)
\(=\frac{2x-6}{x+3}\)
b) Với x=0,5=>\(P=\frac{-5}{3,5}\)
\(P=0\Leftrightarrow2x-6=0\Leftrightarrow x=3\)
x3-x2-x-2=0
<=>(x3+x2+x)-(2x2+2x+2)=0
<=>x(x2+x+1)-2(x2+x+1)=0
<=>(x2+x+1)(x-2)=0
<=>x-2=0(Do x2+x+1>0)
<=>x=2
Vậy x=2