Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-5.(x+1/5) -1/2.(x-2/3)=3/2x-5/6
-5x + (-1) -1/2x -1/3=3/2x-5/6
-5x-1/2x-3/2x=1+1/3-5/6
x.(-5-1/2-3/2)= 6/6+2/6+(-5/6)
x.(-10/2+(-1/2)+(-3/2))=3/6
x.6/2=1/2
x=1/2:6/2
x=1/6
Vậy x = 1/6
a) \(x=\frac{9}{10}\)
b) \(x=\frac{-4}{3}\)
c) \(x=\frac{1}{42}\)
d) \(x=\frac{-47}{10}\)
ko có thời gian nên mình chỉ cho đáp án thôi nhé
thông cảm cho mình ngen
đúng thì k đấy
chúc bạn học giỏi
\(a\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\\ =>\left(x-\frac{1}{2}\right)=\frac{1}{3}\\ =>x=\frac{1}{3}+\frac{1}{2}\\ =>x=\frac{5}{6}\)
b) \(\left(x+\frac{1}{2}\right)^2=\frac{4}{25}\\ =>\left(x+\frac{1}{2}\right)=\frac{2}{5}\\ =>x=\frac{-1}{10}\)
d) (2x+3)2016=(2x+3)2018 khi 2x+3=0 hoặc 1
Nếu 2x+3=0
=2x=-3 ( loại )
Nếu 2x+3=1
=>2x=-2
=>x=-1 ( thỏa )
a) \(\left|\frac{4}{7}-x\right|+\frac{2}{5}=0\)
=> \(\left|\frac{4}{7}-x\right|=-\frac{2}{5}\), vô lí vì \(\left|\frac{4}{7}-x\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
b) \(6-\left|\frac{1}{4}x+\frac{2}{5}\right|=0\)
=> \(\left|\frac{1}{4}x+\frac{2}{5}\right|=6-0=6\)
=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x+\frac{2}{5}=6\\\frac{1}{4}x+\frac{2}{5}=-6\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}\frac{1}{4}x=\frac{28}{5}\\\frac{1}{4}x=-\frac{32}{5}\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
Vậy \(\left[\begin{array}{nghiempt}x=\frac{112}{5}\\x=-\frac{128}{5}\end{array}\right.\)
c) \(\left|x-\frac{1}{3}\right|+\left|2-\frac{4}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\left|\frac{6}{5}\right|=0\)
=> \(\left|x-\frac{1}{3}\right|+\frac{6}{5}=0\)
=> \(\left|x-\frac{1}{3}\right|=-\frac{6}{5}\), vô lí vì \(\left|x-\frac{1}{3}\right|\ge0\)
Vậy không tồn tại giá trị của x thỏa mãn đề bài
\(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\Leftrightarrow\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(\Leftrightarrow\orbr{\begin{cases}2x+\frac{3}{5}=\frac{3}{5}\\2x+\frac{3}{5}=-\frac{3}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\2x=-\frac{6}{5}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{3}{5}\end{cases}}\)
_Tần vũ_
\(3\left(3x-\frac{1}{2}\right)^3+\frac{1}{9}=0\)
\(\Leftrightarrow3\left(3x-\frac{1}{2}\right)^3=-\frac{1}{9}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=-\frac{1}{27}\)
\(\Leftrightarrow\left(3x-\frac{1}{2}\right)^3=\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow3x-\frac{1}{2}=\frac{-1}{3}\)
\(\Leftrightarrow3x=\frac{1}{6}\)
\(\Leftrightarrow x=\frac{1}{18}\)
_Tần Vũ_
1) \(x-\left|1\frac{1}{6}\right|=\frac{5}{21}\)
\(\Rightarrow x-\frac{5}{21}=\left|1\frac{1}{6}\right|\)
\(\Rightarrow x-\frac{5}{21}=\frac{7}{6}\)
\(\Rightarrow x=\frac{7}{6}+\frac{5}{21}=\frac{49}{42}+\frac{10}{42}=\frac{59}{42}\)
2) \(x+\left|-1\frac{2}{3}\right|=\left|-\frac{3}{4}\right|\)
\(\Rightarrow x+\left|-1\frac{2}{3}\right|=\frac{3}{4}\)
\(\Rightarrow x-\frac{3}{4}=-\left|-1\frac{2}{3}\right|\)
\(\Rightarrow x-\frac{3}{4}=-1\frac{2}{3}\)
\(\Rightarrow x-\frac{3}{4}=-\frac{5}{3}\)
\(\Rightarrow x=-\frac{5}{3}+\frac{3}{4}=-\frac{11}{12}\)
3) \(\left|x-\frac{1}{3}\right|=\frac{5}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x-\frac{1}{3}=\frac{5}{2}\\x-\frac{1}{3}=-\frac{5}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}+\frac{1}{3}=\frac{17}{6}\\x=-\frac{5}{2}+\frac{1}{3}=-\frac{13}{6}\end{matrix}\right.\)
4) \(\left|x+\frac{2}{3}\right|=0\)
\(\Rightarrow x+\frac{2}{3}=0\)
\(\Rightarrow x=0-\frac{2}{3}=-\frac{2}{3}\)
5) \(\left|x+2\right|=\frac{1}{3}-\frac{1}{5}\)
\(\Rightarrow\left|x+2\right|=\frac{2}{15}\)
\(\Rightarrow\left[{}\begin{matrix}x+2=\frac{2}{15}\\x+2=-\frac{2}{15}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{2}{15}-2=-\frac{28}{15}\\x=-\frac{2}{15}-2=-\frac{32}{15}\end{matrix}\right.\)
6) \(\left|x-4\right|=\frac{1}{5}-\left(\frac{1}{2}-\frac{5}{4}\right)\)
\(\Rightarrow\left|x-4\right|=\frac{19}{20}\)
\(\Rightarrow\left[{}\begin{matrix}x-4=\frac{19}{20}\\x-4=-\frac{19}{20}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{19}{20}+4=\frac{99}{20}\\x=-\frac{19}{20}+4=\frac{61}{20}\end{matrix}\right.\)
7) \(\left|x-\frac{5}{4}\right|=-\frac{1}{3}\)
Vì \(\left|x-\frac{5}{4}\right|\ge0\)
=> Không có giá trị x thỏa mãn với điều kiện trên
Tìm x, biết:
3(x+2)(x+5) +5(x+5)(x+10) +7(x+10)(x+17) =x(x+2)(x+17) (x∉−2;−5;−10;−17)
2(x−1)(x−3) +5(x−3)(x−8) +12(x−8)(x−20) −1x−20 =−34 (x∉1;3;8;20)
x+110 +2+111 x+112 =x+113 +x+114
x−1030 +x−1443 +x−595 +x−1488 =0
a, \(\frac{2}{3}x+\frac{5}{6}x+\frac{1}{2}=\frac{-3}{4}\)
\(\Leftrightarrow\frac{3}{2}x=\frac{-5}{4}\)
\(\Leftrightarrow x=\frac{-5}{6}\)
b, \(\frac{2}{5}+\frac{3}{5}.\left(3x-3,7\right)=\frac{-53}{10}\)
\(\Leftrightarrow\frac{3}{5}.\left(3x-\frac{37}{10}\right)=\frac{-57}{10}\)
\(\Leftrightarrow3x-\frac{37}{10}=\frac{-19}{2}\)
\(\Leftrightarrow3x=\frac{-29}{5}\)
\(\Leftrightarrow x=\frac{-29}{15}\)
a) \(\frac{2}{3}x+\frac{5}{6}x+\frac{1}{2}=-\frac{3}{4}\)
\(x\left(\frac{2}{3}+\frac{5}{6}\right)+\frac{1}{2}=-\frac{3}{4}\)
\(x\cdot\frac{3}{2}=\frac{-5}{4}\)
\(x=-\frac{5}{6}\)
\(\frac{2}{5}+\frac{3}{5}\left(3x-3,7\right)=-\frac{53}{10}\)
\(\frac{3}{5}\left(3x-\frac{37}{10}\right)=-\frac{57}{10}\)
\(3x-\frac{37}{10}=-\frac{19}{2}\)
\(3x=\frac{-29}{5}\)
\(x=\frac{-29}{15}\)
3.(x-1/2) -5(x+3/5)=-x+1/5
3x - 3/2 -5x +3 = -x+1/5
3x-5x+x= 3/2-3+1/5
x.(3-5+1)=15/10 + (-30/10)+2/10
x.(-1)= -13/10
x = -13/10 : (-1)
x=13/10
vậy x=13/10