Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
linhpham linh
\(\left(x+\frac{3}{4}\right)^2=\frac{49}{16}\)
\(\Rightarrow\left(x+\frac{3}{4}\right)^2=\frac{7^2}{4^2}\)
\(\Rightarrow\left(x+\frac{3}{4}\right)^2=\left(\frac{7}{4}\right)^2\)
\(\Rightarrow x+\frac{3}{4}=\frac{7}{4}\)
\(\Rightarrow x=\frac{7}{4}-\frac{3}{4}\)
\(\Rightarrow x=1\)
a) \(\left(x+\frac{3}{4}\right)^2=\frac{49}{16}\)
=> x + \(\frac{3}{4}=\frac{7}{4}\)
=> x = \(\frac{7}{4}-\frac{3}{4}=\frac{4}{4}=1\)
c) (3x - 1)2 = 81
=> 3x - 1 = 9
=> 3x = 10
=> x = \(\frac{10}{3}\)
b) \(3^{x+1}=9^x=3^{2x}\)
\(\Rightarrow x+1=2x\Leftrightarrow x=1\)
c) \(2^{3x+2}=4^x+5\Leftrightarrow4^{2x+1}=4^{x+5}\)
\(\Rightarrow2x+1=x+5\)\(\Rightarrow x=4\)
d) \(3^{2x-1}=243=3^5\)
\(\Rightarrow2x-1=5\Rightarrow x=3\)
a) \(\left(x-\frac{1}{2}\right)=0\)
\(\Rightarrow x-\frac{1}{2}=0\)
\(\Rightarrow x=0+\frac{1}{2}\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2}.\)
b) \(\left(x-2\right)^2=1\)
\(\Rightarrow x-2=\pm1.\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1+2\\x=\left(-1\right)+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{3;1\right\}.\)
c) \(\left(x-2\right)^3=-8\)
\(\Rightarrow\left(x-2\right)^3=\left(-2\right)^3\)
\(\Rightarrow x-2=-2\)
\(\Rightarrow x=\left(-2\right)+2\)
\(\Rightarrow x=0\)
Vậy \(x=0.\)
Chúc bạn học tốt!
a,x=1:2 b,x=3 c,x=-4 d,x=2 e,x=2:3
mình làm thế là tắt còn tự nghĩ cách trình bày nhé!
a) x : \(\left(-\frac{1}{3}\right)^3=-\frac{1}{3}\)
\(x:\frac{-1}{27}=\frac{-1}{3}\)
\(x=\frac{-1}{3}.\frac{-1}{27}\)
\(x=\frac{1}{81}\)
Vậy \(x=\frac{1}{81}\)
a) \(x:\left(-\frac{1}{3}\right)^3=-\frac{1}{3}\)
\(\Leftrightarrow x=\left(-\frac{1}{3}\right)\cdot\left(-\frac{1}{3}\right)^3\)
\(\Leftrightarrow x=\left(-\frac{1}{3}\right)^4\)
\(\Leftrightarrow x=\frac{1}{81}\)
b)\(\left(\frac{4}{5}\right)^5\cdot x=\left(\frac{4}{5}\right)^7\)
\(\Leftrightarrow x=\left(\frac{4}{5}\right)^7:\left(\frac{4}{5}\right)^5=\left(\frac{4}{5}\right)^2=\frac{16}{25}\)
c)\(\left(x+\frac{1}{2}\right)^2=\frac{1}{16}\)
\(\Leftrightarrow x+\frac{1}{2}=\frac{1}{4}\)
\(\Leftrightarrow x=-\frac{1}{4}\)
d)\(\left(3x+1\right)^3=-27\)
\(\Leftrightarrow3x+1=-3\)
\(\Leftrightarrow3x=-4\)
\(\Leftrightarrow x=-\frac{4}{3}\)
b) \(\left(3x-2\right)^5=-243\)
\(\Rightarrow\left(3x-2\right)^5=\left(-3\right)^5\)
\(\Rightarrow3x-2=-3\Rightarrow x=\dfrac{-1}{3}\)
c) Vì \(\left(2x-5\right)^{2000}\ge0\forall x;\left(3y+4\right)^{2002}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\forall x,y\)
Mà theo bài ra \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)
\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right........\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
\(\Rightarrow\begin{cases}x^2=36\\y^2=64\end{cases}\)
\(\Rightarrow\begin{cases}x=\pm6\\y=\pm8\end{cases}\)
Mà 9 và 16 cùng dấu
=> x ; y cùng dấu
\(\Rightarrow\left(x;y\right)\in\left\{\left(6;8\right);\left(-6;-8\right)\right\}\)
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
+) \(\frac{x^2}{9}=4\Rightarrow x=\pm6\)
+) \(\frac{y^2}{16}=4\Rightarrow y=\pm8\)
Vậy \(x=\pm6;y=\pm8\)
Ta có :
( -2 )4 = 16 \(\Rightarrow\)3x -2 = 4
\(\Rightarrow\) 3x = 4 + 2
\(\Rightarrow\) 3x = 6
\(\Rightarrow\) x = 6 : 3
x = 2 .
-2^3x-2=2^4
3x-2=4
3x=6
x=2