Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(m+1).x = (m+1)^2 => x = m+1
pt đầu <=> m^2x-x = m.(m+1).(m+2) = m.x.(m+2) = m^2x+2mx
<=> m^2x+2mx-m^2x+x = 0
<=> 2mx+x = 0
<=> x.(2m+1) = 0
<=> x=0 hoặc 2m+1=0
<=> x=0 hoặc m=-1/2
<=> x=0 hoặc x=1/2
Vậy ........
ta có (x^2-3x+4)(cx^2+dx+e)
=cx^4+dx^3+ex^2-3cx^3-3dx^2-3ex+4cx^2+4dx+4e
=cx^4+(d-3c)x^3+(e-3d+4c)x^2+(-3e+4d)x+4e
đồng nhất với đa thức A(x) ta có c=1 d-3c=0 e-3d+4c=-3 -3e+4d=a 4e=b
d-3c=0 thế c=1 ta có d-3.1=0 suy ra d=3
e-3d+4c=-3 thế c=1,d=3 ta có e-3.3+4.1=-3 suy ra e=2
-3e+4d=a thế e=2,d=3 ta có a=6
4e=b thế e=2 suy ra b=8
a) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 4
<=> x3 - 9x2 + 27x - 27 - ( x3 - 27 ) + 9( x2 + 2x + 1 ) = 4
<=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 = 4
<=> 45x + 9 = 4
<=> 45x = -5
<=> x = -5/45 = -1/9
b) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 17
<=> x( x2 - 25 ) - ( x3 + 8 ) = 17
<=> x3 - 25x - x3 - 8 = 17
<=> -25x - 8 = 17
<=> -25x = 25
<=> x = -1
b1:
câu a,f áp dụng a2-b2=(a-b)(a+b)
câu b,c áp dụng a3-b3=(a-b)(a2+ab+b2)
câu d: \(x^2+2xy+x+2y=x\left(x+2y\right)+\left(x+2y\right)=\left(x+1\right)\left(x+2y\right)\)
câu e: \(7x^2-7xy-5x+5y=7x\left(x-y\right)-5\left(x-y\right)=\left(7x-5\right)\left(x-y\right)\)
câu g xem lại đề
a) \(A_4=\left(x^2-3x+5\right)^2+7x\cdot\left(x^2-3x+5\right)+12x^2\)
\(=\left(x^2-3x+5\right)^2+4x\cdot\left(x^2-3x+5\right)+3x\left(x^2-3x+5\right)+12x^2\)
\(=\left(x^2-3x+5\right)\left(x^2-3x+5+4x\right)+3x\left(x^2-3x+5+4x\right)\)
\(=\left[\left(x^2-3x+5\right)+3x\right]\cdot\left(x^2-3x+5+4x\right)\)
\(=\left(x^2-3x+5+3x\right)\left(x^2+x+5\right)\)
\(=\left(x^2+5\right)\left(x^2+x+5\right)\)
\(A_5=2\left(x^2+5x-2\right)^2-7\left(x^2+5x-2\right)\left(x^3+3\right)+5\left(x^2+3\right)^2\)
Đặt \(x^2+5x-2=a;x^3+3=b\),Ta có:
\(2a^2-7ab+5b^2=2a^2-5ab-2ab+5b^2=a\left(2a-5b\right)-b\left(2a-5b\right)=\left(2a+5b\right)\left(a-b\right)\)
Thay \(x^2+5x-2=a;x^3+3=b\),ta có:
.......................
bn làm nốt nhé
Câu a :
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=-\dfrac{7}{2}\)
Câu b :
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+26=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\rightarrow x^3-2x^2+4x+2x^2-4x^2+8-x^3-2x=15\)
\(\rightarrow2x+8=15\)
\(\rightarrow2x=15-8=7\)
\(\Rightarrow x=7:2=3,5\)
Do ko có t/gian nên ko kịp lm câu b
\(\Leftrightarrow x^3+27-x\left(x^2-4x+4\right)=27\)
=>x^3+27-x^3+4x^2-4x=27
=>4x^2-4x=0
=>4x(x-1)=0
=>x=0 hoặc x=1