K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

\(\frac{\left(x+2\right)\left(3-x\right)}{7-x}\le0\)

\(\Rightarrow\)\(\hept{\begin{cases}\left(x+2\right)\left(3-x\right)\le0\\7-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}\left(x+2\right)\left(3-x\right)\ge0\\7-x< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3-x\le0\\-x>-7\end{cases}}\) hoặc \(\hept{\begin{cases}3-x\ge0\\-x< -7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}-x\le-3\\x< 7\end{cases}}\) hoặc \(\hept{\begin{cases}-x\ge-3\\x>7\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 7\end{cases}}\) hoặc \(\hept{\begin{cases}x\le3\\x>7\end{cases}}\)( vô lí)

\(\Rightarrow3\le x< 7\)

vậy \(x\in\left\{3;4;5;6\right\}\)

14 tháng 12 2024

Ko Biết

13 tháng 7 2021

b, 

ta có: x-12/3 + y+8/23 + z+190/27 luôn lớn hơn 0 nên không thể nhỏ hơn 0

Để: |x-12/3| + |y+8/23| + |z+190/27| > 0

=> (+) x-12/3 = 0

=> x= 12/3

(+) y+8/23 = 0

=> y = -8/23

(+) z+190/27 = 0

=> z = -190/27

Vậy x = 12/3; y = -8/23; z = -190/27

k giúp mình

làm ơn

13 tháng 7 2021

câu a sai đề thì phải, bạn chữa lại rồi mình làm

3 tháng 1 2017

a, (5x+7)(2x-1) <0 

<=> \(\hept{\begin{cases}5x+7< 0\\2x-1>0\end{cases}}\)<=> \(\hept{\begin{cases}5x< 7\\2x< 1\end{cases}}\)

<=> \(\hept{\begin{cases}5x+7>0\\2x-1< 0\end{cases}}\)<=> ..................

(5x+7)(2x-1) =0 

<=> \(\orbr{\begin{cases}5x+7=0\\2x-1=0\end{cases}}\)<=> ..................

3 tháng 1 2017
Ai trả lời chi mk đi mk cần gấp lắm » mk sẽ cho tk
1 tháng 8 2017

a,

\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)

Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)

d,

\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)

\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)

1 tháng 8 2017

Bạn mới hỏi ở dưới rồi :v