\(2^x+2^{x+x}+2^{x+2}+2^{x+3}=120\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)

\(\Rightarrow2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=120\)

\(\Rightarrow\left(1+2+4+8\right)\cdot2^x=120\)

\(\Rightarrow15\cdot2^x=120\)

\(\Rightarrow2^x=\dfrac{120}{15}=8=2^3\)

\(\Rightarrow x=3\)

Vậy............

27 tháng 6 2017

\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)

\(=2^x.1+2^x.2^1+2^x.2^2+2^x.2^3=120\)

\(=2^x.1+2^x.2+2^x.4+2^x.8=120\)

\(=2^x\left(1+2+4+8\right)=120\)

\(=2^x.15=120\)

\(2^x=120:15=8\)

\(2^x=2^3\Leftrightarrow x=3\)

21 tháng 7 2017

a) \(\text{Ta có : }\frac{x}{3}=\frac{y}{2}\Leftrightarrow2x=3y\Leftrightarrow x=\frac{3y}{2}\)

Thay \(x=\frac{3y}{2}\)vào biểu thức \(2x^2+3y^2=30\). Ta được : 

\(2\cdot\left(\frac{3y}{2}\right)^2+3y^2=30\Leftrightarrow\left(2\cdot\frac{9}{4}\right)y^2+3y^2=30\)

\(\Leftrightarrow\frac{9}{2}y^2+3y^2=30\Leftrightarrow\frac{15}{2}y^2=30\Leftrightarrow y^2=4\Leftrightarrow y=2\)

Với \(y=2\Rightarrow x=\frac{3.2}{2}=3\)

Vậy x = 3 và y = 2 

b) \(\text{Ta có : }\frac{x}{3}=\frac{y}{4}\Leftrightarrow4x=3y\Leftrightarrow x=\frac{3y}{4}\)

Thay \(x=\frac{3y}{4}\)vào biểu thức \(2x^2-3y^2=-120\)Ta được : 

\(2\cdot\left(\frac{3y}{4}\right)^2-3y^2=-120\Leftrightarrow\left(2\cdot\frac{9}{16}\right)y^2-3y^2=-120\)

\(\Leftrightarrow\frac{9}{8}y^2-3y^2=-120\Leftrightarrow-\frac{15}{8}y^2=-120\Leftrightarrow y^2=64\Leftrightarrow y=8\)

Với \(y=8\Rightarrow x=\frac{3.8}{4}=6\)

Vậy y = 8 và x = 6 

Ý c tương tự nha 

a)

\(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\\ \Leftrightarrow2^x.1+2^x.2+2^x.2^2+2^x.2^3=120\\ \Leftrightarrow2^x\left(1+2+2^2+2^3\right)=120\\ \Leftrightarrow2^x=8=2^3\\ \Rightarrow x=3\)

b)

\(\dfrac{x+4}{2011}+\dfrac{x+3}{2012}=\dfrac{x+2}{2013}+\dfrac{x+1}{2014}\\ \Leftrightarrow\dfrac{x+4}{2011}+1+\dfrac{x+3}{2012}+1=\dfrac{x+2}{2013}+1+\dfrac{x+1}{2014}+1\\ \Leftrightarrow\dfrac{x+2015}{2011}+\dfrac{x+2015}{2012}=\dfrac{x+2015}{2013}+\dfrac{x+2015}{2014}\\ \Leftrightarrow\left(x+2015\right).\dfrac{1}{2011}+\left(x+2015\right).\dfrac{1}{2012}-\left(x+2015\right).\dfrac{1}{2013}-\left(x+2015\right).\dfrac{1}{2014}=0\\ \Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2011}+\dfrac{1}{2012}-\dfrac{1}{2013}-\dfrac{1}{2014}\right)=0\\ \Rightarrow x+2015=0\Leftrightarrow x=-2015\)

25 tháng 2 2016

lại bài này

16 tháng 9 2017

Ta có : \(\frac{\left(4^x\right)^2}{2^x}=8\)

\(\Rightarrow4^{2x}=8.2^x\)

\(\Rightarrow4^{2x}=2^3.2^x\)

\(\Rightarrow\left(2^2\right)^{2x}=2^{x+3}\)

\(\Rightarrow2^{4x}=2^{x+3}\)

=> 4x = x + 3

=> 3x = 3

=> x = 1

Vậy x = 1. 

26 tháng 7 2017

a) Ta có: \(6x=4y=3z\Rightarrow\dfrac{6x}{12}=\dfrac{4y}{12}=\dfrac{3z}{12}\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{12}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-2}{-4}=\dfrac{1}{2}.\)

Với: \(\dfrac{x}{2}=\dfrac{1}{2}\Rightarrow x=1.\)

\(\dfrac{2y}{6}=\dfrac{y}{3}=\dfrac{1}{2}\Rightarrow y=\dfrac{1}{2}.3=\dfrac{3}{2}.\)

\(\dfrac{3z}{12}=\dfrac{z}{4}=\dfrac{1}{2}\Rightarrow z=\dfrac{1}{2}.4=\dfrac{4}{2}=2.\)

Vậy: \(x=1;y=\dfrac{3}{2};z=2.\)

26 tháng 7 2017

giúp mk nha! thank you