\(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{2}{x\left(x+1\right)}=1\frac{201...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

help me

7 tháng 8 2018

\(a)\) Ta có : 

\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)

\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)

\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)

\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)

Lại có : 

\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)

\(\Rightarrow\)\(x=2019\)

Vậy \(x=2019\)

Chúc bạn học tốt ~ 

13 tháng 7 2016

a) \(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2014}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2015}{2014}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2015}{2014}\)

\(1-\frac{1}{x+1}=\frac{2015}{2014}\)

\(\frac{1}{x+1}=1-\frac{2015}{2014}\)

\(\frac{1}{x+1}=-\frac{1}{2014}\)

\(x+1=-2014\)

\(x=-2015\)

b) \(1+\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2x\left(x+1\right)}=\frac{2984}{1993}\)

\(\frac{2}{2}+\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2984}{1993}\)

\(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2984}{1993}\)

\(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2984}{1993}\)

\(2\left(1-\frac{1}{x+1}\right)=\frac{2984}{1993}\)

\(1-\frac{1}{x+1}=\frac{1492}{1993}\)

\(\frac{1}{x+1}=\frac{501}{1993}\)

\(501\left(x+1\right)=1993\)không tồn tại số tự nhiên x

30 tháng 4 2015

 

\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\left(1-\frac{2016}{1}\right)+\left(1-\frac{2017}{2}\right)+...+\left(1-\frac{4030}{2015}\right)\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=\frac{2015}{1}+\frac{2015}{2}+...+\frac{2015}{2015}\)

\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)x=2015\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)

\(\Rightarrow x=2015\)

Không hiểu thì hỏi mình nhé! Thiên dâng bữa nay chăm chỉ đột xuất ta??? 

7 tháng 6 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}\)

\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2015}{2016}\)

\(\Rightarrow2\cdot\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(\Rightarrow2\cdot\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}\div2\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{4032}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{4032}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{4032}\)

\(\Rightarrow x+1=4032\Rightarrow x=4031\)

Vậy \(x=4031\)

7 tháng 6 2019

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.x+1}\right)=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

=> \(2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2015}{2016}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2016}:2\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2015}{2032}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{2015}{2032}\)

=> \(\frac{1}{x+1}=\frac{1}{2032}\)

Vì 1 = 1

=> x + 1 = 2032

=> x = 2032 - 1

=> x = 2031

8 tháng 6 2019

Bài 1:

\(a,22\frac{1}{2}.\frac{7}{9}+50\%-1,25\)

=\(\frac{45}{2}.\frac{7}{9}+\frac{1}{2}-\frac{5}{4}\)

=\(\frac{35}{2}+\frac{1}{2}-\frac{5}{4}\)

=\(\frac{70}{4}+\frac{2}{4}-\frac{5}{4}\)

=\(\frac{67}{4}\)

\(b,1,4.\frac{15}{49}-\left(\frac{4}{5}+\frac{2}{3}\right):2\frac{1}{5}\)

=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{12}{15}+\frac{10}{15}\right):\frac{11}{5}\)

=\(\frac{3}{7}-\frac{22}{15}.\frac{5}{11}\)

=\(\frac{3}{7}-\frac{2}{3}\)

=\(-\frac{5}{21}\)

\(c,125\%.\left(-\frac{1}{2}\right)^2:\left(1\frac{5}{6}-1,6\right)+2016^0\)

=\(\frac{5}{4}.\frac{1}{4}:\left(\frac{11}{6}-\frac{8}{5}\right)+1\)

=\(\frac{5}{16}:\frac{7}{30}+1\)

=\(\frac{131}{56}\)

\(d,1,4.\frac{15}{49}-\left(20\%+\frac{2}{3}\right):2\frac{1}{5}\)

=\(\frac{7}{5}.\frac{15}{49}-\left(\frac{1}{5}+\frac{2}{3}\right):\frac{11}{5}\)

=\(\frac{3}{7}-\frac{13}{15}:\frac{11}{5}\)

=\(\frac{3}{7}-\frac{13}{33}\)

=\(\frac{8}{231}\)

Bài đ làm giống hệt như bài c

Bài 2 :

\(a,\left|\frac{3}{4}.x-\frac{1}{2}\right|=\frac{1}{4}\)

=>\(\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}=\frac{3}{4}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}=\frac{1}{4}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}=1\\x=\frac{1}{4}:\frac{3}{4}=\frac{1}{3}\end{matrix}\right.\)

Vậy x ∈{1;\(\frac{1}{3}\)}

\(b,\frac{5}{3}.x-\frac{2}{5}.x=\frac{19}{10}\)

=>\(\frac{19}{15}.x=\frac{19}{10}\)

=>\(x=\frac{19}{10}:\frac{19}{15}=\frac{3}{2}\)

Vậy x ∈ {\(\frac{3}{2}\)}

c,\(\left|2.x-\frac{1}{3}\right|=\frac{2}{9}\)

=>\(\left[{}\begin{matrix}2.x-\frac{1}{3}=\frac{2}{9}\\2.x-\frac{1}{3}=-\frac{2}{9}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2.x=\frac{2}{9}+\frac{1}{3}=\frac{5}{9}\\2.x=-\frac{2}{9}+\frac{1}{3}=\frac{1}{9}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\frac{5}{9}:2=\frac{5}{18}\\x=\frac{1}{9}:2=\frac{1}{18}\end{matrix}\right.\)

Vậy x∈{\(\frac{5}{18};\frac{1}{18}\)}

\(d,x-30\%.x=-1\frac{1}{5}\)

=\(70\%x=-\frac{6}{5}\)

=\(\frac{7}{10}.x=-\frac{6}{5}\)

=>\(x=-\frac{6}{5}:\frac{7}{10}=-\frac{12}{7}\)

Vậy x∈{\(-\frac{12}{7}\)}

8 tháng 6 2019

Bài 2

a/

\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x-\frac{1}{2}=\frac{1}{4}\\\frac{3}{4}.x-\frac{1}{2}=-\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{1}{4}+\frac{1}{2}\\\frac{3}{4}.x=-\frac{1}{4}+\frac{1}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{3}{4}.x=\frac{3}{4}\\\frac{3}{4}.x=\frac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{3}{4}:\frac{3}{4}\\x=\frac{1}{4}:\frac{3}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy \(x=1\) hoặc \(x=\frac{1}{3}\)

b/ Đặt x làm thừa số chung rồi tính như bình thường

c/ Tương tự câu a

d/ Tương tự câu b

23 tháng 4 2016

b)

\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)

\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)

\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)

\(x-2=8\)

=> x = 10

23 tháng 4 2016

a) 

\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)

\(A=\frac{1}{2016}\)

16 tháng 5 2016

Đặt A=1/3+1/6+1/10+...+2/x*(x+1)

        1/2A=1/3*2+1/6*2+1/10*2+...+2/2*x*(x+1)

         1/2A=1/6+1/12+1/20+...+1/x*(x+1)

          1/2A=1/2*3+1/3*4+1/4*5+...+1/x*(x+1)

           1/2A=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/(x+1)

           1/2A=1/2-1/x+1

           A=(1/2-1/x+1):1/2

          A=1-2/x+1

Ta có A=1999/2001

Hay 1-2/x+1=1999/2001

           2/x+1=1-1999/2001

          2/x+1=2/2001

=>x+1=2001

=>x=2000

16 tháng 5 2016

Cho A = 1/3+1/6+1/10+...+2/x(x+1)

    1/2A= 1/3.2+1/6.2+1/10.2+...+2/x(x+1)2

    1/2A= 1/6+1/12+1/20+...+1/x(x+1)

    1/2A= 1/2.3+1/3.4+1/4.5+...+1/x(x+1)

    1/2A= 1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1

    1/2A= 1/2-1/x+1

    A      = (1/2-1/x+1)/1/2

    A      = 1-2/x+1

Mà A=1999/2001

=> 1-2/x+1= 1999/2001

         2/x+1= 1-1999/2001

         2/x+1= 2/2001

     =>x+1=2001

     =>x     = 2000