Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x +2}{12^{12}}+\frac{x+2}{13^{13}}\)
\(\Leftrightarrow\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\left(\frac{x+2}{12^{12}}+\frac{x+2}{13^{13}}\right)=0\)
\(\Leftrightarrow\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
\(\Leftrightarrow\left(x+2\right).\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}+\frac{1}{12^{12}}+\frac{1}{13^{13}}\right)=0\)
Vì \(\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}+\frac{1}{12^{12}}+\frac{1}{13^{13}}\right)\ne0\)nên \(x+2=0\Rightarrow x=-2\)
<=>\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
<=>\(\left(x+2\right)\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)=0\)
Vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}>0\)
=> \(x+2=0\)
<=>\(x=-2\)
Ta có:
\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x+2}{12^{12}}+\frac{x+2}{13^{13}}\)
\(\Rightarrow\left(x+2\right).\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}\right)=\left(x+2\right).\left(\frac{1}{12^{12}}+\frac{1}{13^{13}}\right)\)
Mà \(\frac{1}{10^{10}}+\frac{1}{11^{11}}\ne\frac{1}{12^{12}}+\frac{1}{13^{13}}\)
\(x+2=0\)
\(\Rightarrow x=-2\)
Vậy x=-2
=> x+2/10^10+x+2/11^11-x+2/12^12-x+2/13^13=0
=>(x+2).(1/10^10+1/11^11-1/12^12-1/13^13)=0
Mà 1/10^10>1/11^11>1/12^12>1/13^13
=>1/10^10+1/11^11-1/12^12-1/13^13 khác 0
=>x+2=0=>x=-2
Tick nhé
Ta có
\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x+2}{12^{12}}+\frac{x+2}{13^{13}}\)
<=>\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
<=>\(\left(x+2\right)\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}+\frac{1}{12^{12}}+\frac{1}{13^{13}}\right)=0\)
Vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}+\frac{1}{12^{12}}+\frac{1}{13^{13}}\ne0\)
=>\(x+2=0\)
<=>\(x=-2\)
Tick nha quachtxuanhong23
=>\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
=>\(\left(x+2\right).\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)=0\)
vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\ne0\)
=>x+2=0 =>x=-2
Vậy x=-2
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
Ta có : \(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x+2}{12^{12}}+\frac{x+2}{13^{13}}\)
=> \(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
=> \(\left(x+2\right)\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)=0\)
Vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}\ne\frac{1}{12^{12}}+\frac{1}{13^{13}}\) => \(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\ne0\)
=> \(x+2=0\)
=> \(x=-2\)
Ta có:
\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x+2}{12^{12}}+\frac{x+2}{13^{13}}\)\(\Rightarrow\left(x+2\right)\frac{1}{10^{10}}+\left(x+2\right)\frac{1}{11^{11}}=\left(x+2\right)\frac{1}{12^{12}}+\left(x+2\right)\frac{1}{13^{13}}\)
\(\Rightarrow\left(x+2\right)\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}\right)=\left(x+2\right)\left(\frac{1}{12^{12}}+\frac{1}{13^{13}}\right)\)
Vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}\ne\frac{1}{12^{12}}+\frac{1}{13^{13}}\ne0\) nên \(x+2=0\Rightarrow x=-2\)