Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x.(x+3)-x2+15=0
=> x^2 + 3x - x^2 + 15 = 0
=> 3x + 15 = 0
=> 3x = -15
=> x = -5
vậy_
b. (2x-1)(x+3) - x(2x-6) =15
=> 2x^2 + 6x - x - 3 - 2x^2 + 6x = 15
=> x - 3 = 15
=> x = 18
vậy_
c. x3 -36x = 0
=> x(x^2 - 36) = 0
=> x = 0 hoặc x^2 - 36 = 0
=> x = 0 hoặc x^2 = 36
=> x = 0 hoặc x = 6 hoặc x = -6
vậy_
d. 6x2 + 6x =x2+2x+1
=> 6x(x + 1) = (x + 1)^2
=> 6x(x + 1) - (x + 1)^2 = 0
=> (x + 1)(6x - x - 1) = 0
=> (x + 1)(5x - 1) = 0
=> x = -1 hoặc 5x = 1
=> x = -1 hoặc x = 1/5
vậy_
e. x(3x+1)=1-9x2
=> x(3x + 1) = (1 - 3x)(1 + 3x)
=> x(3x + 1) - (1 - 3x)(1 + 3x) = 0
=> (3x + 1)(x - 1 + 3x) = 0
=> (3x + 1)(4x - 1) = 0
=> 3x + 1 = 0 hoặc 4x - 1 = 0
=> 3x = -1 hoặc 4x = 1
=> x = -1/3 hoặc x = 1/4
vậy_
a) \(x^3-2x=0\)
\(\Rightarrow x.\left(x^2-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{2}\end{cases}}\)
b) \(x^3+2x=0\)
\(\Rightarrow x.\left(x^2+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2+2=0\end{cases}}\)
Mà x2 và 2 là một số chẵn nên tổng của chúng khác 0. Vậy x = 0.
a/ => 6x3 + x2 - 2x = 0
=> x (6x2 + x - 2) = 0
=> x (6x2 + 4x - 3x - 2) = 0
=> x [ 2x (3x + 2) - (3x + 2) ] =0
=> x (3x + 2) (2x - 1) = 0
=> x = 0
hoặc 3x + 2 = 0 => 3x = -2 => x = -2/3
hoặc 2x - 1 = 0 => 2x = 1 => x = 1/2
Vậy x = 0; x = -2/3 ; x = 1/2
Câu b,c,d tương tự
a) x4 - 16x2 = 0
<=> ( x2 )2 - ( 4x )2 = 0
<=> ( x2 - 4x )( x2 + 4x ) = 0
<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0
<=> x( x - 4 )x( x + 4 ) = 0
<=> x2( x - 4 )( x + 4 ) = 0
<=> \(\hept{\begin{cases}x^2=0\\x-4=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)( thay bằng dấu hoặc hộ mình nhé )
b) 9x2 + 6x + 1 = 0
<=> ( 3x )2 + 2.3x.1 + 12 = 0
<=> ( 3x + 1 )2 = 0
<=> 3x + 1 = 0
<=> 3x = -1
<=> x = -1/3
c) x2 - 6x = 16
<=> x2 - 6x - 16 = 0
<=> x2 + 2x - 8x - 16 = 0
<=> x( x + 2 ) - 8( x + 2 ) = 0
<=> ( x + 2 )( x - 8 ) = 0
<=> \(\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)
d) 9x2 + 6x = 80
<=> 9x2 + 6x - 80 = 0
<=> 9x2 + 30x - 24x - 80 = 0
<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0
<=> ( x + 10/3 )( 9x - 24 ) = 0
<=> \(\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)
e) Áp dụng công thức an.bn = ( ab )n ta có :
25( 2x - 1 )2 - 9( x + 1 )2 = 0
<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0
<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0
<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0
<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0
<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0
<=> ( 7x - 8 )( 13x - 2 ) = 0
<=> \(\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)
Bài làm :
a) x4 - 16x2 = 0
<=> ( x2 )2 - ( 4x )2 = 0
<=> ( x2 - 4x )( x2 + 4x ) = 0
<=> [ x( x - 4 ) ][ x( x + 4 ) ] = 0
<=> x( x - 4 )x( x + 4 ) = 0
<=> x2( x - 4 )( x + 4 ) = 0
Vậy x=0 hoặc x=±4
b) 9x2 + 6x + 1 = 0
<=> ( 3x )2 + 2.3x.1 + 12 = 0
<=> ( 3x + 1 )2 = 0
<=> 3x + 1 = 0
<=> 3x = -1
<=> x = -1/3
c) x2 - 6x = 16
<=> x2 - 6x - 16 = 0
<=> x2 + 2x - 8x - 16 = 0
<=> x( x + 2 ) - 8( x + 2 ) = 0
<=> ( x + 2 )( x - 8 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=8\end{cases}}\)
d) 9x2 + 6x = 80
<=> 9x2 + 6x - 80 = 0
<=> 9x2 + 30x - 24x - 80 = 0
<=> 9x( x + 10/3 ) - 24( x + 10/3 ) = 0
<=> ( x + 10/3 )( 9x - 24 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{10}{3}=0\\9x-24=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{10}{3}\\x=\frac{8}{3}\end{cases}}\)
e) 25( 2x - 1 )2 - 9( x + 1 )2 = 0
<=> 52( 2x - 1 )2 - 32( x + 1 )2 = 0
<=> [ 5( 2x - 1 ) ]2 - [ 3( x + 1 ) ]2 = 0
<=> ( 10x - 5 )2 - ( 3x + 3 )2 = 0
<=> [ ( 10x - 5 ) - ( 3x + 3 ) ][ ( 10x - 5 ) + ( 3x + 3 ) ] = 0
<=> ( 10x - 5 - 3x - 3 )( 10x - 5 + 3x + 3 ) = 0
<=> ( 7x - 8 )( 13x - 2 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}7x-8=0\\13x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)
a) Ta có : x4 - 16x2 = 0
=> x4 - 8x2 - 8x2 + 64 = 64
=> x2(x2 - 8) - 8(x2 - 8) = 64
=> (x2 - 8)2 = 64
=> \(\orbr{\begin{cases}x^2-8=8\\x^2-8=-8\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=16\\x^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm4\\x=0\end{cases}}\Rightarrow x\in\left\{4;-4;0\right\}\)
b) Ta có 9x2 + 6x + 1 = 0
=> 9x2 + 3x + 3x + 1 = 0
=> 3x(3x + 1) + (3x + 1) = 0
=> (3x + 1)2 = 0
=> 3x + 1 = 0
=> x = -1/3
c) Ta có x2 - 6x = 16
=> x2 - 6x + 9 = 25
=> (x - 3)2 = 25
=> \(\orbr{\begin{cases}x-3=5\\x-3=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=8\\x=-2\end{cases}}\Rightarrow x\in\left\{8;-2\right\}\)
d) 9x2 + 6x = 80
=> 9x2 + 6x + 1 = 81
=> (3x + 1)2 = 81
=> \(\orbr{\begin{cases}3x+1=9\\3x+1=-9\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=-\frac{10}{3}\end{cases}\Rightarrow x\in}\left\{\frac{8}{3};\frac{-10}{3}\right\}\)
e) 25(2x - 1)2 - 9(x + 1)2 = 0
=> [5(2x - 1)]2 - [3(x + 1)]2 = 0
=> (10x - 5)2 - (3x + 3)2 = 0
=> (10x - 5 - 3x - 3)(10x - 5 + 3x + 3) = 0
=> (7x - 8)(13x - 2) = 0
=> \(\orbr{\begin{cases}7x=8\\13x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=\frac{2}{13}\end{cases}}\)
a. \(5x^2\left(2x-3\right)+\left(2x^2+3x+3\right)\left(3-2x\right)=6x^3-9x^2\Leftrightarrow5x^2\left(2x-3\right)-\left(2x^2+3x+3\right)\left(2x-3\right)=3x^2\left(2x-3\right)\Leftrightarrow5x^2\left(2x-3\right)-\left(2x^2+3x+3\right)\left(2x-3\right)-3x^2\left(2x-3\right)=0\Leftrightarrow\left[5x^2-\left(2x^2+3x+3\right)-3x^2\right]\left(2x-3\right)=0\Leftrightarrow\left(5x^2-2x^2-3x-3-3x^2\right)\left(2x-3\right)=0\Leftrightarrow\left(2x-3\right)\left(-3x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\-3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\-3x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-1\end{matrix}\right.\)
b. \(\left(4x^2+2x\right)\left(x^2-x\right)+\left(4x^2+6\right)\left(x-x^2\right)=0\Leftrightarrow\left(4x^2+2x\right)\left(x^2-x\right)-\left(4x^2+6\right)\left(x^2-x\right)=0\Leftrightarrow\left(x^2-x\right)\left[\left(4x^2+2x\right)-\left(4x^2+6\right)\right]=0\Leftrightarrow\left(x^2-x\right)\left(4x^2+2x-4x^2-6\right)=0\Leftrightarrow x\left(2x-6\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-6=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x=6\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=1\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=3\\x=1\end{matrix}\right.\)
a) \(5x\left(x-4\right)-x^2+16=0\)
\(4x^2-20x+16=0\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}\)
b) \(x+6x^2+9x^2=0\)
\(x\left(3x+1\right)^2=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}\)
a) x( x + 3 ) - 2x - 6 =0
=> x^2 + 3x - 2x -6 = 0
=> x^2 + x - 6 = 0
=> ( x^2 -x ) + ( 6x - 6 ) = 0
=> x( x - 1 ) + 6( x - 1 ) = 0
=> ( x - 1 )( x + 6 ) = 0
=> x = 1 hoặc x= -6
b) 9x^2 - 6x - 3 = 0
=> (9x^2 + 3x ) - ( 9x + 3 ) = 0
=> 3x(3x + 1) - 3(3x + 1 ) = 0
=> 3( 3x + 1 )(x-1)=0
=> x = -1/3 hoặc x = 1
Vũ ơi! Dòng thứ 3 xuống dòng thứ 4 câu a. Em phân tích bị sai rồi. Em có thể làm theo cách khác mà không cần phân tích ra không ? Sử dụng -2x - 6 = - 2 ( x + 3 )
Câu b. Đúng rồi.