K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2021

\(\text{A.}\)\(\text{x3+6x2+3x−10}\)

10 tháng 7 2018

a. \(2.\left(5x-8\right)-3.\left(4x-5\right)=4.\left(3x-4\right)+11\Leftrightarrow10x-16-12x+15=12x-16+11\\ \)

\(\Leftrightarrow-2x-1=12x-5\Leftrightarrow14x-4=0\Leftrightarrow x=\frac{2}{7}\)

10 tháng 7 2018

\(a,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)

\(\Leftrightarrow10x-16-12x+15=12x-16+11\)

\(\Leftrightarrow10x-12x-12x=-16+11+16-15\)

\(\Leftrightarrow-14x=-4\)

\(\Leftrightarrow x=\frac{-4}{-14}=\frac{2}{7}\)

10 tháng 10 2019

a, (3x - 5)(2x - 1) - (x + 2)(6x - 1) = 0

=> 6x^2 - 3x - 10x + 5 - (6x^2 - x + 12x - 2) = 0

=> 6x^2 - 13x + 5 - 6x^2 - 11x + 2 = 0

=> -24x + 7 = 0 

=> - 24x = -7

=> x = 7/24

b, (3x - 2)(3x + 2) - (3x - 1)^2 = -5

=> 9x^2 - 4 - 9x^2 + 6x - 1 = -5

=> 6x - 5 = -5

=> 6x = 0

=> x = 0

c, x^2 = -6x - 8

=> x^2 + 6x + 8 = 0

=> x^2 + 2.x.3 + 9 - 1 = 0

=> (x + 3)^2 = 1

=> x + 3 = 1 hoặc x + 3 = -1

=> x = -2 hoặc x = -4

13 tháng 11 2018

a) \(x-1-\dfrac{x^2-4}{x+1}=\dfrac{\left(x-1\right)\left(x+1\right)-\left(x^2-4\right)}{x+1}=\dfrac{x^2-1-x^2+4}{x+1}=\dfrac{3}{x+1}\)

b) \(\dfrac{3x-1}{2\left(3x+1\right)}+\dfrac{3x+1}{2\left(3x-1\right)}-\dfrac{6x}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{\left(3x-1\right)^2+\left(3x+1\right)^2-12x}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{9x^2-6x+1+9x^2+6x+1-12x}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{18x^2-12x+2}{2\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{9x^2-6x+1}{\left(3x-1\right)\left(3x+1\right)}\)

\(=\dfrac{\left(3x-1\right)^2}{\left(3x-1\right)\left(3x+1\right)}=\dfrac{3x-1}{3x+1}\)

20 tháng 11 2022

c: \(=\dfrac{1}{x-2}-\dfrac{x+4}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x\left(x+2\right)}\)

\(=\dfrac{x\left(x+2\right)-x^2-4x-2x+4}{x\left(x-2\right)\left(x+2\right)}\)

\(=\dfrac{x^2+2x-x^2-6x+4}{x\left(x-2\right)\left(x+2\right)}=\dfrac{-4x+4}{x\left(x-2\right)\left(x+2\right)}\)

d: Sửa đề: \(\dfrac{2x^2+1}{x^3+1}-\dfrac{x-1}{x^2-x+1}-\dfrac{1}{x+1}\)

\(=\dfrac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\)

10 tháng 12 2018

1.

a) \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

b) \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

10 tháng 12 2018

Bài 1:

a, \(x\left(x+4\right)+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-1\end{matrix}\right.\)

Vậy \(x=-4\) hoặc \(x=-1\)

b, \(x\left(x-3\right)+2x-6=0\)

\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy \(x=3\) hoặc \(x=-2\)

10 tháng 10 2019

a) \(\left(3x-5\right)\left(2x-1\right)-\left(x+2\right)\left(6x-1\right)=0\)

\(6x^2-13x+5-6x^2-11x+2=0\)

\(24x=7\)\(x=\frac{7}{24}\)

b) \(\left(3x-2\right)\left(3x+2\right)-\left(3x-1\right)^2=-5\)

\(9x^2-4-9x^2+6x-1=5\)

\(6x=10\)\(x=\frac{5}{3}\)

c) \(x^2=-6x-8\)\(x^2+6x+8=0\)\(\left(x+2\right)\left(x+4\right)=0\)

\(\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)