K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Vẽ các vecto \(\overrightarrow {OA}  = \overrightarrow a ,\overrightarrow {OB}  = \overrightarrow b ,\overrightarrow {OC}  = \overrightarrow c ,\overrightarrow {OD}  = \overrightarrow d \)

Dựa vào hình vẽ, ta thấy tọa độ của 4 điểm A, B, C, D là:

\(A\left( { - 5; - 3} \right),B\left( {3; - 4} \right),C\left( { - 1;3} \right),D\left( {2;5} \right)\)

Do đó \(\overrightarrow a  = \overrightarrow {OA}  = \left( { - 5; - 3} \right),\overrightarrow b  = \overrightarrow {OB}  = \left( {3; - 4} \right),\overrightarrow c  = \overrightarrow {OC}  = \left( { - 1;3} \right),\overrightarrow d  = \overrightarrow {OD}  = \left( {2;5} \right)\)

b) Vì \(\overrightarrow a  = \overrightarrow {OA}  = \left( { - 5; - 3} \right)\)nên \(\overrightarrow a  = \left( { - 5} \right)\overrightarrow i  + \left( { - 3} \right)\overrightarrow j  =  - 5\overrightarrow i  - 3\overrightarrow j \)

Vì \(\overrightarrow b  = \overrightarrow {OB}  = \left( {3; - 4} \right)\) nên \(\overrightarrow b  = 3\overrightarrow i  + \left( { - 4} \right)\overrightarrow j  = 3\overrightarrow i  - 4\overrightarrow j \)

Vì \(\overrightarrow c  = \overrightarrow {OC}  = \left( { - 1;3} \right)\) nên \(\overrightarrow c  = \left( { - 1} \right)\overrightarrow i  + \left( 3 \right)\overrightarrow j  =  - \overrightarrow i  + 3\overrightarrow j \)

Vì \(\overrightarrow d  = \overrightarrow {OD}  = \left( {2;5} \right)\) nên \(\overrightarrow d  = 2\overrightarrow i  + 5\overrightarrow j \)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có vectơ \(\overrightarrow {OM} \)  biểu diễn theo hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) là: \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right)\)

b) Do tọa độ hai điểm A và B là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right)\) nên ta có:\(\overrightarrow {OA}  = \left( {{x_A},{y_A}} \right),\overrightarrow {OB}  = \left( {{x_B},{y_B}} \right)\)

Vậy \(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left( {{x_A} + {x_B};{y_A} + {y_B}} \right) = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

Tọa độ điểm M chính là tọa độ của vectơ nên tọa độ M  là \(M\left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Vì \(\overrightarrow v  = \left( {0; - 7} \right)\)nên \(\overrightarrow v  = 0\overrightarrow i  + \left( { - 7} \right)\overrightarrow j  =  - 7\overrightarrow j \)

b) Vì B có tọa  độ là (-1; 0) nên \(\overrightarrow {OB}  = \left( { - 1;{\rm{ }}0} \right)\). Do đó: \(\overrightarrow {OB}  = \left( { - 1} \right)\overrightarrow i  + 0\overrightarrow j  =  - \overrightarrow i \)

30 tháng 1 2023

Giả sử `\vec{c}=m\vec{a}+n\vec{b}`

`<=>(3;-4)=m(2;0)+n(0;-3)`

`<=>(3;-4)=(2m;-3n)`

`<=>{(m=3/2),(n=4/3):}`

   `=>\vec{c}=3/2\vec{a}+4/3\vec{b}`

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Vì ABCD là hình bình hành nên ta có: \(\overrightarrow {AD}  = \overrightarrow {BC} \)\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \) (đpcm)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Vì \(\overrightarrow a  = 3\overrightarrow i \)nên \(\overrightarrow a  = \left( {3;0} \right)\)

b) Vì \(\overrightarrow b  =  - \overrightarrow j \)nên \(\overrightarrow b  = \left( {0; - 1} \right)\)

c) Vì \(\overrightarrow c  = \overrightarrow i  - 4\overrightarrow j \)nên \(\overrightarrow c  = \left( {1; - 4} \right)\)

d) Vì \(\overrightarrow d  = 0,5\overrightarrow i  + \sqrt 6 \overrightarrow j \)nên \(\overrightarrow d  = \left( {0,5;\sqrt 6 } \right)\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

 Ta vẽ vecto \(\overrightarrow {OA}  = \overrightarrow d \) và \(A\left( {0;2} \right)\). Tọa độ \(\overrightarrow {OA} \) chính là tọa độ của điểm A nên \(\overrightarrow d  = \left( {2;2} \right)\)

Ta vẽ vecto \(\overrightarrow {OB}  = \overrightarrow c \) và \(A\left( { - 3;0} \right)\). Tọa độ \(\overrightarrow {OB} \) chính là tọa độ của điểm B nên \(\overrightarrow c  = \left( { - 3;0} \right)\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Bước 1: Dựng hình bình hành có cạnh song song với giá của vecto \(\overrightarrow a ,\;\overrightarrow b \) và đường chéo là vecto \(\overrightarrow u ,\;\overrightarrow v \).

Ta dựng được hình hình hành ABCD và DEGH. Trong đó:  DC và DE nằm trên giá của vecto \(\overrightarrow a \), DA và DH nằm trên giá của vecto \(\overrightarrow b \), còn vecto \(\overrightarrow u ,\;\overrightarrow v \) lần lượt là hai dường chéo.

Dễ thấy: \(\overrightarrow u  = \overrightarrow {DA}  + \overrightarrow {DC} ,\;\overrightarrow v  = \overrightarrow {DH}  + \overrightarrow {DE} \)

Mà \(\overrightarrow {DA}  = 3\overrightarrow b ,\;\overrightarrow {DC}  = \overrightarrow a \;,\;\overrightarrow {DH}  = 3\overrightarrow b ,\;\overrightarrow {DE}  =  - 2\overrightarrow a .\)

\( \Rightarrow \overrightarrow u  = 2\overrightarrow b  + \overrightarrow a ,\;\,\overrightarrow v  = 3\overrightarrow b  - 2\overrightarrow a \)

AH
Akai Haruma
Giáo viên
28 tháng 12 2021

Lời giải:

$\overrightarrow{i}=(1,0), \overrightarrow{j}=(0,1)$

$\Rightarrow \overrightarrow{i}-\overrightarrow{j}=(1-0,0-1)=(1,-1)$

AH
Akai Haruma
Giáo viên
28 tháng 12 2021

Bài 2:

$\overrightarrow{a}+2\overrightarrow{b}=(3+2.-1, -4+2.2)=(1, 0)$