Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đánh sai đề rồi bạn êi, phải là \(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}=3\Leftrightarrow2x\sqrt{1-y^2}\) \(+2y\sqrt{2-z^2}+2z\sqrt{3-x^2}=6\)
<=> \(\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
<=> ..bla bla tự làm nhá !
Sử dụng Bất đẳng thức Bunyakovsky cho 2 bộ 3 số \(\left(\sqrt{1-y^2};\sqrt{2-z^2};\sqrt{3-x^2}\right)\) và \(\left(x,y,z\right)\) ta có
\(\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(x^2+y^2+z^2\right)\cdot\left[6-\left(x^2+y^2+z^2\right)\right]\left(1\right)\)
Đặt \(x^2+y^2+z^2=a\) ta có Bất đẳng thức (1) tương đương
\(9=\left(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\right)^2\le\left(a\right)\cdot\left(6-a\right)\)
\(=-a^2+6a-9+9=-\left(a-3\right)^2+9\le9\)
Dấu "=" xảy ra khi Giải hệ phương trình trên ta được
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=x^2+y^2+z^2=3\\\frac{x^2}{1-y^2}=\frac{y^2}{2-z^2}=\frac{z^2}{3-x^2}=1\end{cases}}\) giải hệ pt ta có \(\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}\)
Thế nào nó bị lỗi nên không hiển thị
có \(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)
\(y\sqrt{2-z^2}\le\frac{y+2-z^2}{2}\) cô si
\(z\sqrt{3-x^2}\le\frac{z+3-x^2}{2}\)
\(\Rightarrow x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\frac{6}{2}=3\)
dấu = xảy ra \(\Leftrightarrow\hept{\begin{cases}x=\sqrt{1-y^2}\\y=\sqrt{2-z^2}\\z=\sqrt{3-x^2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1-y^2\\y^2=2-z^2\\z^2=3-x^2\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=0\\z=\sqrt{2}\end{cases}}}\)
\(\Leftrightarrow\left[x^2+\left(1-y^2\right)-2x\sqrt{1-y^2}\right]+\left[y^2+\left(2-z^2\right)-2y\sqrt{2-z^2}\right]+\left[z^2+\left(3-x^2\right)-2z\sqrt{3-x^2}\right]=0\)
\(\Leftrightarrow\left(x-\sqrt{1-y^2}\right)^2+\left(y-\sqrt{2-z^2}\right)^2+\left(z-\sqrt{3-x^2}\right)^2=0\)
\(\Leftrightarrow x=\sqrt{1-y^2};\text{ }y=\sqrt{2-z^2};\text{ }z=\sqrt{3-x^2};\text{ }\left(x,y,z\ge0\right)\)
\(\Leftrightarrow\left(x^2;y^2;z^2\right)=\left(1;0;2\right)\Leftrightarrow\left(x;y;z\right)=\left(1;0;\sqrt{2}\right)\)
Áp dụng bất đẳng thức Cosi với 2 số thực không âm ta có:
\(x\sqrt{1-y^2}\le\frac{x^2+1-y^2}{2}\)
\(y\sqrt{1-z^2}\le\frac{y^2+1-z^2}{2}\)
\(z\sqrt{1-x^2}\le\frac{z^2+1-x^2}{2}\)
=>\(x\sqrt{1-y^2}+y\sqrt{1-z^2}+z\sqrt{1-x^2}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-z^2}{2}+\frac{z^2+1-x^2}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x^2=1-y^2;y^2=1-z^2;z^2=1-x^2\)
Cộng vế với vế của các đẳng thức với nhau ta được: \(x^2+y^2+z^2=1-y^2+1-z^2+1-x^2=3-\left(x^2+y^2+z^2\right)\)
<=>\(2\left(x^2+y^2+z^2\right)=3\Leftrightarrow x^2+y^2+z^2=\frac{3}{2}\)(đpcm)
\(x+2\sqrt{3}=y+z+2\sqrt{yz}\Rightarrow x-y-z=2\sqrt{yz}-2\sqrt{3}....\)
Do x,y,z thuộc N \(\Rightarrow\hept{\begin{cases}yz=9\\x=y+z\end{cases}}\). đến đây đơn giản rồi nhé .
GL
chắc j \(\sqrt{yz}-\sqrt{3}\) là số vô tỉ? Bạn thử cm cho mk đi!!!
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(\sqrt{\frac{3+x^2}{x}}.\sqrt{x}+\sqrt{\frac{3+y^2}{y}}.\sqrt{y}+\sqrt{\frac{3+z^2}{z}}.\sqrt{z}\right)^2\) \(\le\left(\frac{3+x^2}{x}+\frac{3+y^2}{y}+\frac{3+z^2}{z}\right)\left(x+y+z\right)\)
\(\Rightarrow\left(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}\right)^2\) \(\le\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+x+y+z\right)\left(x+y+z\right)\)
Kết hợp giải thiết:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=2x+2y+2z\) suy ra:
\(\left(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}\right)^2\le4.\left(x+y+z\right)^2\)
Do đó:
\(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}\le2.\left(x+y+z\right)\) \(\left(1\right)\)
Theo giải thiết ta có:
\(\sqrt{3+x^2}+\sqrt{3+y^2}+\sqrt{3+z^2}=2x+2y+2z\)
Do đó xảy ra đẳng thức ở \(\left(1\right)\) tức là:
\(\hept{\begin{cases}\frac{3+x^2}{x}=\frac{3+y^2}{y}=\frac{3+z^2}{z}\\\frac{2}{x}+\frac{2}{y}+\frac{2}{z}=2x+2y+2z\end{cases}}\) \(\Leftrightarrow x=y=z=1\)
Thử lại thấy bộ số \(\left(x,y,z\right)=\left(1,1,1\right)\) thỏa mãn.
Áp dụng BĐT \(ab\le\dfrac{a^2+b^2}{2}\)
\(x\sqrt{1-y^2}+y\sqrt{2-z^2}+z\sqrt{3-x^2}\le\dfrac{x^2+1-y^2}{2}+\dfrac{y^2+2-z^2}{2}+\dfrac{z^2+3-x^2}{2}=\dfrac{6}{2}=3\)
Dấu "=" xảy ra nên:
\(\left\{{}\begin{matrix}x=\sqrt{1-y^2}\\y=\sqrt{2-z^2}\\z=\sqrt{3-x^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2=1-y^2\\y^2=2-z^2\\z^2=3-x^2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^2=1-\left(2-z^2\right)=z^2-1\\z^2=3-x^2\end{matrix}\right.\)
\(\Rightarrow x^2=3-x^2-1=2-x^2\Rightarrow x^2=1\Rightarrow x=1\Rightarrow y=0\Rightarrow z=\sqrt{2}\)
Vậy \(\left\{{}\begin{matrix}x=1\\y=0\\z=\sqrt{2}\end{matrix}\right.\)