\(p\left(x\right)=x^3+ã^2-ã+b\)có 3 nghi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 6 2020

Theo Viet: \(\left\{{}\begin{matrix}tana+tanb=p\\tana.tanb=q\end{matrix}\right.\)

\(\Rightarrow tan\left(a+b\right)=\frac{tana+tanb}{1-tana.tanb}=\frac{p}{1-q}\)

\(\Rightarrow A=cos^2\left(a+b\right)+psin\left(a+b\right)+q.sin^2\left(a+b\right)\)

\(=\frac{1}{cos^2\left(a+b\right)}\left(1+p.\frac{sin\left(a+b\right)}{cos\left(a+b\right)}+q.\frac{sin^2\left(a+b\right)}{cos^2\left(a+b\right)}\right)\)

\(=\left[1+tan^2\left(a+b\right)\right]\left[1+p.tan\left(a+b\right)+q.tan^2\left(a+b\right)\right]\)

\(=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]\left[1+\frac{p^2}{1-q}+\frac{p^2q}{\left(1-q\right)^2}\right]\)

\(=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]\left[1+\frac{p^2}{\left(1-q\right)^2}\right]=\left[1+\frac{p^2}{\left(1-q\right)^2}\right]^2\)

NV
20 tháng 10 2019

ĐKXĐ: ...

\(\Leftrightarrow\frac{3cos^2x}{sin^2x}-2cosx+2\sqrt{2}sin^2x-3\sqrt{2}cosx=0\)

\(\Leftrightarrow cosx\left(\frac{3cosx-2sin^2x}{sin^2x}\right)-\sqrt{2}\left(3cosx-2sin^2x\right)=0\)

\(\Leftrightarrow\left(3cosx-2sin^2x\right)\left(\frac{cosx}{sin^2x}-\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3cosx-2sin^2x=0\\cosx-\sqrt{2}sin^2x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2cos^2x+3cosx-2=0\\\sqrt{2}cos^2x+cosx-\sqrt{2}=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\cosx=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=\frac{\pi}{4}+k2\pi\end{matrix}\right.\) \(\Rightarrow\alpha.\beta=\frac{\pi^2}{12}\)

31 tháng 3 2017

a) Đúng, vì nếu gọi m là đường thẳng vuông góc với β và n là đường thẳng vuông góc với hai mặt phẳng song song α, γ thì góc (m, n) = (β, α) = (β, γ), mà β ⊥ α nên β ⊥ γ.

b) Sai, vì hai mặt phẳng (β), (γ) cùng vuông góc với mp(α) có thể song song hoặc cắt nhau.

31 tháng 3 2017

Giải bài 2 trang 113 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 2 trang 113 sgk Hình học 11 | Để học tốt Toán 11

NV
1 tháng 4 2020

\(A=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-1}{x}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}}{1}=\frac{a}{n}\)

\(B=\lim\limits_{x\rightarrow0}\frac{\left(1+ax\right)^{\frac{1}{n}}-1}{\left(1+bx\right)^{\frac{1}{m}}-1}=\lim\limits_{x\rightarrow0}\frac{\frac{a}{n}\left(1+ax\right)^{\frac{1-n}{n}}}{\frac{b}{m}\left(1+bx\right)^{\frac{1-m}{m}}}=\frac{am}{bn}\)

\(C=\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{1+bx}\sqrt[4]{1+cx}\left(\sqrt{1+ax}-1\right)+\sqrt[4]{1+cx}\left(\sqrt[3]{1+bx}-1\right)+\left(\sqrt[4]{1+cx}-1\right)}{x}\)

\(C=\lim\limits_{x\rightarrow0}\sqrt[3]{1+bx}\sqrt[4]{1+cx}.\frac{\sqrt{1+ax}-1}{x}+\lim\limits_{x\rightarrow0}\sqrt[4]{1+cx}.\frac{\sqrt[3]{1+bx}-1}{x}+\lim\limits_{x\rightarrow0}\frac{\sqrt[4]{1+cx}-1}{x}\)

Từ câu A ta có: \(\lim\limits_{x\rightarrow0}\frac{\sqrt[n]{1+ax}-1}{x}=\frac{a}{n}\)

\(\Rightarrow C=\frac{a}{2}+\frac{b}{3}+\frac{c}{4}\)

NV
1 tháng 4 2020

Bạn sử dụng định lý L'Hopital cho giới hạn vô định:

\(\lim\limits_{x\rightarrow a}\frac{f\left(x\right)}{g\left(x\right)}=\lim\limits_{x\rightarrow a}\frac{f'\left(x\right)}{g'\left(x\right)}\)

24 tháng 5 2017

Theo giả thiết ta có 3 góc: \(\alpha;\beta=\alpha+\dfrac{\pi}{3};\gamma=\alpha+\dfrac{2\pi}{3}\).
Ta có:
\(tan\alpha.tan\left(\alpha+\dfrac{\pi}{3}\right)+tan\left(\alpha+\dfrac{\pi}{3}\right).tan\left(\alpha+\dfrac{2\pi}{3}\right)+\)\(tan\left(\alpha+\dfrac{2\pi}{3}\right).tan\alpha\)
\(=tan\alpha\left[tan\left(\alpha+\dfrac{\pi}{3}\right)+tan\left(\alpha+\dfrac{2\pi}{3}\right)\right]\)\(+tan\left(a+\dfrac{\pi}{3}\right)tan\left(\alpha+\dfrac{2\pi}{3}\right)\)
\(=tan\alpha\dfrac{sin\left(2\alpha+\pi\right)}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)\(+\dfrac{sin\left(\alpha+\dfrac{\pi}{3}\right)sin\left(\alpha+\dfrac{2\pi}{3}\right)}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=tan\alpha\dfrac{-sin2\alpha}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)\(+\dfrac{cos\dfrac{\pi}{3}-cos\left(2\alpha+\pi\right)}{2cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=\dfrac{-2sin^2\alpha}{cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)\(+\dfrac{\dfrac{1}{2}+cos2\alpha}{2cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=\dfrac{\dfrac{1}{2}-4sin^2\alpha+cos2\alpha}{2cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)}\)
\(=\dfrac{\dfrac{1}{2}-4\left(1-cos^2\alpha\right)+2cos^2\alpha-1}{cos\dfrac{\pi}{3}+cos\left(2\alpha+\pi\right)}\)
\(=\dfrac{6cos^2\alpha-\dfrac{9}{2}}{\dfrac{1}{2}-cos2\alpha}\)
\(=\dfrac{3\left(2cos^2\alpha-\dfrac{3}{2}\right)}{\dfrac{1}{2}-\left(2cos^2\alpha-1\right)}=\dfrac{3\left(2cos^2\alpha-\dfrac{3}{2}\right)}{\dfrac{3}{2}-2cos^2\alpha}=-3\).

24 tháng 5 2017

\(4cos\alpha.cos\beta cos\gamma=4cos\alpha cos\left(\alpha+\dfrac{\pi}{3}\right)cos\left(\alpha+\dfrac{2\pi}{3}\right)\)
\(=4cos\alpha.\dfrac{1}{2}\left(cos\dfrac{\pi}{3}+cos\left(2\alpha+\pi\right)\right)\)
\(=4cos\alpha.\dfrac{1}{2}\left(\dfrac{1}{2}-cos2\alpha\right)\)
\(=cos\alpha-2cos\alpha.cos2\alpha\)
\(=cos\alpha-\left(cos\alpha+cos3\alpha\right)\)
\(=-cos3\alpha\)
\(=cos\left(\pi+3\alpha\right)\)
\(=cos3\left(\dfrac{\pi}{3}+\alpha\right)\)
\(=cos3\beta\) (đpcm).