\(\geq\) 4-x

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2020

Cái này nãy tui mới làm ở bên h_ọ_c_24 ý.

\(x\left(x-1\right)^2\ge4-x\)

\(\Leftrightarrow x\left(x^2-2x+1\right)\ge4-x\)

\(\Leftrightarrow x^3-2x^2+x\ge4-x\)

\(\Leftrightarrow x^3-2x^2+2x-4\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)\ge0\)

\(\Leftrightarrow x-2\ge0\left(Vì:x^2+2>0\forall x\right)\)

\(\Leftrightarrow x\ge2\)

Vậy \(S=\left\{2;+\infty\right\}\)

1 tháng 2 2020

@ Băng Băng @ Mình không kí hiệu tập nghiệm như vậy nhé em:

S = [ 2; \(+\infty\))

31 tháng 1 2020

\(x\left(x-1\right)^2\ge4-x\)

\(\Leftrightarrow x\left(x^2-2x+1\right)\ge4-x\)

\(\Leftrightarrow x^3-2x^2+x\ge4-x\)

\(\Leftrightarrow x^3-2x^2+2x-4\ge0\)

\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)\ge0\)

\(\Leftrightarrow x-2\ge\left(Vì:x^2+2>0\forall x\right)\)

\(\Leftrightarrow x\ge2\)

\(\Rightarrow S=\left\{2;+\infty\right\}\)

1 tháng 2 2020

Sửa giúp mình nha. Dòng cuối á tại mới được cô Nguyễn Linh Chi bên olm nhắc =))

\(\Rightarrow S=[2;+\infty)\)

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10 A.4 B.5 C.9 D.10 2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\) A. 5 B.6 C.21 D.40 3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ 4. Tập...
Đọc tiếp

1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10

A.4 B.5 C.9 D.10

2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)

A. 5 B.6 C.21 D.40

3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x

A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ

4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)

A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]

5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng

A. 15 B. 26 C. 11 D. 0

6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi

A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R

7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm

A. 0 B.1 C.2 D. vô số

8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là

A. 0 B.1 C.2 D.3

9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]

A. m< \(\frac{7}{2}\) B. m=​ \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R

10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]

A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2

0
29 tháng 4 2019

\(\left(16-x^2\right)\sqrt{x-3}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\16-x^2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\in(-\infty;-4]\cup[4;+\infty)\end{matrix}\right.\)

\(\Leftrightarrow\left\{3\right\}\cup[4;+\infty)\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2020

Câu 8:

$(x-1)(2+x)>0$ thì có 2 TH xảy ra:

TH1: \(\left\{\begin{matrix} x-1>0\\ x+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>1\\ x>-2\end{matrix}\right.\Rightarrow x>1\)

TH2: \(\left\{\begin{matrix} x-1< 0\\ x+2< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 1\\ x< -2\end{matrix}\right.\Rightarrow x< -2\)

Vậy $x\in (1;+\infty)$ hoặc $x\in (-\infty; -2)$

AH
Akai Haruma
Giáo viên
28 tháng 5 2020

Câu 7:

$|x^2+x-12|=|(x-3)(x+4)|$

Nếu $x\geq 3$ thì $(x-3)(x+4)\geq 0$

$\Rightarrow |x^2+x-12|=x^2+x-12$

BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)

Nếu $3> x> -4(1)$ thì $(x-3)(x+4)< 0$

$\Rightarrow |x^2+x-12|=-(x^2+x-12)$

BPT trở thành: $-(x^2+x-12)< x^2+x+12$

$\Leftrightarrow 2(x^2+x)>0\Leftrightarrow x>0$ hoặc $x< -1$

Kết hợp với $(1)$ suy ra $3>x>0$ hoặc $-1> x> -4$

Nếu $x\leq -4$ thì $(x-3)(x+4)\geq 0$

$\Rightarrow |x^2+x-12|=x^2+x-12$

BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)

Vậy BPT có nghiệm $x\in (+\infty; 0)$ hoặc $x\in (-\infty; -1)$

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Lời giải:
ĐKXĐ: \(x\geq 2\) hoặc \(x\leq \frac{-1}{2}\)

\((x^2-3x)\sqrt{2x^2-3x-2}\geq 0\)

\(\Leftrightarrow \left[\begin{matrix} (x^2-3x)\sqrt{2x^2-3x-2}=0(1)\\ (x^2-3x)\sqrt{2x^2-3x-2}>0(2)\end{matrix}\right.\)

Với \((1)\Rightarrow \left[\begin{matrix} x=0\\ x=3\\ x=2\\ x=-\frac{1}{2}\end{matrix}\right.\). Kết hợp ĐKXĐ \(\Rightarrow \left[\begin{matrix} x=3\\ x=2\\ x=-\frac{1}{2}\end{matrix}\right.(*)\)

Với (2) \(\Leftrightarrow \left\{\begin{matrix} x^2-3x>0\\ 2x^2-3x-2>0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x(x-3)>0\\ (2x+1)(x-2)>0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x< 0\\ x>3\end{matrix}\right.\\ \left[\begin{matrix} x>2\\ x< \frac{-1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x< \frac{-1}{2}\\ x>3\end{matrix}\right.(**)\)

Từ $(*)$ và $(**)$ ta có tập nghiệm của bpt là:

\(x=2; x\in (-\infty; \frac{-1}{2}]; x\in [3;+\infty)\)