Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x\left(x-1\right)^2\ge4-x\)
\(\Leftrightarrow x\left(x^2-2x+1\right)\ge4-x\)
\(\Leftrightarrow x^3-2x^2+x\ge4-x\)
\(\Leftrightarrow x^3-2x^2+2x-4\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)\ge0\)
\(\Leftrightarrow x-2\ge\left(Vì:x^2+2>0\forall x\right)\)
\(\Leftrightarrow x\ge2\)
\(\Rightarrow S=\left\{2;+\infty\right\}\)
Sửa giúp mình nha. Dòng cuối á tại mới được cô Nguyễn Linh Chi bên olm nhắc =))
\(\Rightarrow S=[2;+\infty)\)
\(\left(16-x^2\right)\sqrt{x-3}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\16-x^2\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\in(-\infty;-4]\cup[4;+\infty)\end{matrix}\right.\)
\(\Leftrightarrow\left\{3\right\}\cup[4;+\infty)\)
Câu 8:
$(x-1)(2+x)>0$ thì có 2 TH xảy ra:
TH1: \(\left\{\begin{matrix} x-1>0\\ x+2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x>1\\ x>-2\end{matrix}\right.\Rightarrow x>1\)
TH2: \(\left\{\begin{matrix} x-1< 0\\ x+2< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x< 1\\ x< -2\end{matrix}\right.\Rightarrow x< -2\)
Vậy $x\in (1;+\infty)$ hoặc $x\in (-\infty; -2)$
Câu 7:
$|x^2+x-12|=|(x-3)(x+4)|$
Nếu $x\geq 3$ thì $(x-3)(x+4)\geq 0$
$\Rightarrow |x^2+x-12|=x^2+x-12$
BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)
Nếu $3> x> -4(1)$ thì $(x-3)(x+4)< 0$
$\Rightarrow |x^2+x-12|=-(x^2+x-12)$
BPT trở thành: $-(x^2+x-12)< x^2+x+12$
$\Leftrightarrow 2(x^2+x)>0\Leftrightarrow x>0$ hoặc $x< -1$
Kết hợp với $(1)$ suy ra $3>x>0$ hoặc $-1> x> -4$
Nếu $x\leq -4$ thì $(x-3)(x+4)\geq 0$
$\Rightarrow |x^2+x-12|=x^2+x-12$
BPT trở thành: $x^2+x-12< x^2+x+12$ (luôn đúng)
Vậy BPT có nghiệm $x\in (+\infty; 0)$ hoặc $x\in (-\infty; -1)$
Lời giải:
ĐKXĐ: \(x\geq 2\) hoặc \(x\leq \frac{-1}{2}\)
\((x^2-3x)\sqrt{2x^2-3x-2}\geq 0\)
\(\Leftrightarrow \left[\begin{matrix} (x^2-3x)\sqrt{2x^2-3x-2}=0(1)\\ (x^2-3x)\sqrt{2x^2-3x-2}>0(2)\end{matrix}\right.\)
Với \((1)\Rightarrow \left[\begin{matrix} x=0\\ x=3\\ x=2\\ x=-\frac{1}{2}\end{matrix}\right.\). Kết hợp ĐKXĐ \(\Rightarrow \left[\begin{matrix} x=3\\ x=2\\ x=-\frac{1}{2}\end{matrix}\right.(*)\)
Với (2) \(\Leftrightarrow \left\{\begin{matrix} x^2-3x>0\\ 2x^2-3x-2>0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x(x-3)>0\\ (2x+1)(x-2)>0\end{matrix}\right.\)\(\Leftrightarrow \left\{\begin{matrix} \left[\begin{matrix} x< 0\\ x>3\end{matrix}\right.\\ \left[\begin{matrix} x>2\\ x< \frac{-1}{2}\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x< \frac{-1}{2}\\ x>3\end{matrix}\right.(**)\)
Từ $(*)$ và $(**)$ ta có tập nghiệm của bpt là:
\(x=2; x\in (-\infty; \frac{-1}{2}]; x\in [3;+\infty)\)
Cái này nãy tui mới làm ở bên h_ọ_c_24 ý.
\(x\left(x-1\right)^2\ge4-x\)
\(\Leftrightarrow x\left(x^2-2x+1\right)\ge4-x\)
\(\Leftrightarrow x^3-2x^2+x\ge4-x\)
\(\Leftrightarrow x^3-2x^2+2x-4\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)\ge0\)
\(\Leftrightarrow x-2\ge0\left(Vì:x^2+2>0\forall x\right)\)
\(\Leftrightarrow x\ge2\)
Vậy \(S=\left\{2;+\infty\right\}\)
@ Băng Băng @ Mình không kí hiệu tập nghiệm như vậy nhé em:
S = [ 2; \(+\infty\))