Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- vì a chia cho 29 dư 5=>a=29a'+5(a'\(\in\)N)
- vì a chia cho 31 dư 28 =>a=31b'+28
=>a= 29a'+5=31b'+28
=29(a'-b')=2b'+23
Ta thấy: 2b'+23 là số lẻ=> 29(a'-b'0 cũng là số lẻ
theo đề bài a nhỏ nhất=>b' nhỏ nhất
=> a'-b' nhỏ nhất
do đố b'=1
vậy số cần tìm là 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là : 29p + 5 ( p thuộc N )
Tương tự A = 31q + 28 ( q thuộc N )
Nê 29p + 5 = 31q + 28 => 29.( p - q ) = 2q + 23
Ta thaayd : 2q + 23 là số lẻ => 29. ( p - q ) cũng là số lẻ => p - q >=1
theo giả thiết A nhỏ nhất => q nhỏ nhất ( A = 31q + 28 )
=> 2q = 29.( p - q ) -23 nhỏ nhất
=> p - q nhỏ nhất
do đó p - q =1 => 2q = 29 - 23 = 6
=> q = 3
A = 31q + 28 = 31.3 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28=> 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ ==>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 (p ∈∈ N)
Tương tự: A = 31q + 28 (q ∈∈ N)
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p - q) cũng là số lẻ => p - q ≥≥ 1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=> 2q = 29(p - q) - 23 nhỏ nhất
=> p - q nhỏ nhất
Do đó p - q = 1 => 2q = 29 - 23 = 6
=> q = 3
Gọi số tự nhiên cần tìm là \(A\)
Chia cho 29 dư 5 nghĩa là: \(A=29p+5\left(p\in N\right)\)
Tương tự: \(A=31q+28\left(q\in N\right)\)
Nên: \(29p+5=31q+28\) \(\Rightarrow\) \(29-\left(p-q\right)=2q+23\)
Ta thấy: \(2q+23\) là số lẻ \(\Rightarrow\) \(29\left(p-q\right)\) cũng là số lẻ \(\Rightarrow\)\(p-q\ge1\)
Theo giả thiết A nhỏ nhất
\(\Rightarrow\) q nhỏ nhất \(\left(A=31q+28\right)\)
\(\Rightarrow\)\(2q=29\left(p-q\right)-23\) nhỏ nhất
\(\Rightarrow\) \(p-q\) nhỏ nhất
Do đó:
\(p-q=1\) \(\Rightarrow\) \(2q=29-23=6\)
\(\Rightarrow\) \(q=3\)
Vậy số cần tìm là: \(A=31q+28=31.3+28=121\)
biết rắng khi chia số này cho 29 dư 5, còn khi chia cho 31 thì dư 28
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p – q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Bạn (¯`*•.¸,¤°´✿.。.:*ĞĨŔĹ✿Čá✿ŤíŃĤ*.:。.✿`°¤,¸.•*´¯) (ღ๖ۣۜsky ๖ۣۜteamʚɞ ★ (❤youtube ) ) chép bài của bạn khác không ghi nguồn. Lát báo cáo cô Chi
Gọi a là số phải tìm
Vì a chia 29 dư 5 nên a chia hết cho 24
Vì a chia 31 dư 28 nên a chia hết cho 3
Theo đề bài ta có a là số tự nhiên nhỏ nhất nên a là BCNN(24, 3)=24
Vậy số cần tìm là 24
Nếu chia hết cho 29 thì chia cho 31 dư 28-5=23.
Hiệu của 31 và 29: 31 - 29 = 2
Thương của phép chia cho 31 là:
(29-23) : 2 = 3
(Hoặc. Gọi a là thương lúc này của phép chia cho 31.
2 x a + 23 = 29 => a = 3)
Số cần tìm là:
31 x 3 + 28 = 121
Đáp số: 121
Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p - q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
Chia cho 29 dư 5 nghĩa là: A = 29p + 5 ( p ∈ N )
Tương tự: A = 31q + 28 ( q ∈ N )
Nên: 29p + 5 = 31q + 28 => 29(p – q) = 2q + 23
Ta thấy: 2q + 23 là số lẻ => 29(p – q) cũng là số lẻ =>p – q >=1
Theo giả thiết A nhỏ nhất => q nhỏ nhất (A = 31q + 28)
=>2q = 29(p – q) – 23 nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121
31q + 28 ( q ∈ N ) nên
31q + 28 = 29p + 5 ở đây p > q vì nếu p ≤ q ta được 31q - 29 p + 23 = 0 là vô lý vì 31q - 29 p + 23 > 0 với giả thiết p ≤ q ( 29p ≤ 29q < 31q )
vậy p > q ta có 29 ( p - q ) = 23 + 2q vì A là nhỏ nhất nên với p, q ở trên thì p - q nhỏ nhất = 1 thay lại vào ta được q = ( 29 - 23 ) : 2 = 3 vậy p = 4 thay vào ta được A = 29. 4 + 5 = 121
Thử lại 121 = 31 . 3 + 28 thỏa mãn đề bài
Bạn tham khảo ạ: https://olm.vn/hoi-dap/detail/7780956182.html
Nếu cần gấp ib mình gửi link cho
Gọi số tự nhiên cần tìm là A .
Chia cho 29 dư 5 nghĩa là :
\(A=29p+5\) \(\left(p\in N\right)\)
Tương tự với khi chia cho 31 dư 28 :
\(A=31q+28\) \(\left(q\in N\right)\)
Ta có :
\(29p+5=31q+28\)
\(\Rightarrow29p+5=29q+2q+28\)
\(\Rightarrow29p-29q=2p+28-5\)
\(\Rightarrow29\left(p-q\right)=2p+23\)
Vì \(2p+23\) là số lẻ nên \(29\left(p-q\right)\) cũng là số lẻ \(\Rightarrow p-q\ge1\)
Theo bài cho thì A nhỏ nhất :
\(\Rightarrow\)q nhỏ nhất \(\left(A=31q+28\right)\)
\(\Rightarrow2q=29\left(p-q\right)-23\)nhỏ nhất
\(\Rightarrow p-q\) nhỏ nhất
Do đó : p - q = 1
=> 2q = 29 . 1 - 23
=> 2q = 6
=> q = 3
Vậy số tự nhiên nhỏ nhất cần tìm là :
A = 31q - + 28 = 31 . 3 - 28 = 93 - 28 = 65 .
Học tốt