Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(A=\frac{4n-5}{n+1}\)là số nguyên thì \(4n-5⋮n+1\)
\(\Rightarrow\)\(4\left(n+1\right)-\left(4n-5\right)⋮n+1\)
\(\Rightarrow\)\(4n+4-4n+5⋮n+1\)
\(\Rightarrow\)\(9⋮n+1\)
\(\Rightarrow\)\(n+1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow\)\(n\in\left\{0;-2;2;-4;8;-10\right\}\)
Để \(A\inℤ\) thì \(\frac{4n-5}{n+1}\inℤ\)
\(\Rightarrow4n-5⋮n+1\)
\(\Rightarrow4x+4-9⋮n+1\)
\(\Rightarrow4\left(n+1\right)-9⋮n+1\)
\(\Rightarrow9⋮n+1\)
Vì \(n\inℕ\) nên \(n+1\inℕ\)
\(\Rightarrow n+1\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng sau:
n + 1 | 1 | 3 | 9 | -1 | -3 | -9 |
n | 0 (thỏa mãn) | 2 (thỏa mãn) | 8 (thỏa mãn) | -2 (loại) | -4 (loại) | -10 (loại) |
Vậy \(n\in\left\{0;2;8\right\}\) thì \(A\inℤ\).
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
Do \(n \in N \Rightarrow 4n+3 \in N\)
\(8n+193 \in N\)
Nên để A là số tự nhiên thì \(\frac{{8n+193}}{{4n+3}} \in N\)
\(\Leftrightarrow 8n+193 \in 4n+3\)
Mà \(4n+3 \vdots 4n+3\) nên \(2(4n+3) \vdots 4n+3\)
Mk xin lỗi nha, mk k kịp lm hết mong bạn thông cảm!!
\(4n+7⋮4n+1\)
\(\Rightarrow4n+1+6⋮4n+1\)
\(\Rightarrow6⋮4n+1\)
\(\Rightarrow4n+1\inƯ\left(6\right)\)
...
\(\left(4n+7\right)⋮\left(4n+1\right)\)
\(\Rightarrow\left(4n+1+6\right)⋮\left(4n+1\right)\)
\(\text{Vì }\left(4n+1\right)⋮\left(4n+1\right)\text{ nên }6⋮\left(4n+1\right)\)
\(\Rightarrow4n+1\inƯ\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\text{Vì n }\inℕ\text{ nên loại trường hợp 4n + 1 chẵn}\)
\(\text{Vậy }4n+1\in\left\{-3;-1;1;3\right\}\)
Bạn thử từng trường hợp loại - 3 là ra nhé
\(\left(4n+14\right)⋮\left(n+1\right)\)
\(\Leftrightarrow4\left(n+1\right)+10⋮\left(n+1\right)\)
\(\Leftrightarrow\left(n+1\right)\inƯ\left(10\right)=\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
Do \(n\in N\)
\(\Leftrightarrow n\in\left\{0;1;4;9\right\}\)