Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{21}+\frac{1}{27}+\frac{1}{36}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{9}\)
\(\frac{2}{42}+\frac{2}{54}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{9}\)
\(\frac{2}{6.7}+\frac{2}{7.8}+...+\frac{2}{n\left(n+1\right)}=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{1}{9}\)
\(\Rightarrow\frac{1}{6}-\frac{1}{n+1}=\frac{n+1-6}{6n+6}=\frac{1}{9}\)
\(\frac{n-5}{6n+6}=\frac{1}{9}\)
\(9n-45=6n+6\)
\(9n-6n=6+45=51\)
\(n=51:3=17\)
\(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+...+\frac{2}{n}.\left(n+1\right)=\frac{2}{9}\)
\(\Leftrightarrow\frac{1}{3.7}+\frac{1}{4.7}+\frac{1}{4.9}+...+\frac{2}{n}.\left(n+1\right)=\frac{2}{9}\)
\(\Leftrightarrow\frac{2}{2.3.7}+\frac{2}{2.4.7}+\frac{2}{2.4.9}+...+\frac{2}{n}.\left(n+1\right)=\frac{2}{9}\)
\(\Leftrightarrow\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+...+\frac{2}{n}.\left(n+1\right)=\frac{2}{9}\)
\(\Leftrightarrow2.\left(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{n}-\frac{1}{n}+1\right)=\frac{2}{9}\)
\(\Leftrightarrow2.\left(\frac{1}{6}-\frac{1}{n}+1\right)=\frac{2}{9}\)
\(\Leftrightarrow\frac{1}{6}-\frac{1}{n}+1=\frac{1}{9}\)
\(\Leftrightarrow\frac{1}{n}+1=\frac{1}{6}-\frac{1}{9}\)
\(\Leftrightarrow\frac{1}{n}+1=\frac{1}{18}\)
\(\Leftrightarrow n+1=18\)
\(\Leftrightarrow n=17\)
Vậy \(n=17\)
Để n2 + 36 \(⋮\)n - 1
=> n2 - 1 + 37 \(⋮\)n - 1
=> n2 - n + n - 1 + 37 \(⋮\)n - 1
=> n(n - 1) + (n - 1) + 37 \(⋮\)n - 1
=> (n - 1)(n + 1) + 37 \(⋮\)n - 1
Vì (n - 1)(n + 1) \(⋮\)n - 1
=> 37 \(⋮\)n - 1
=> n - 1 \(\inƯ\left(37\right)\)
=> \(n-1\in\left\{1;-1;37;-37\right\}\)
=> \(n\in\left\{2;0;38;-36\right\}\)
Vì n \(\inℕ\)
=> Các giá trị của n thỏa mãn bài toán là \(n\in\left\{0;2;38\right\}\)
BAI 1
ta co n+6 chia het cho n
ma n chia het cho n
suy ra 6 chia het cho n
ma n la mot so tu nhien nen
ta co n thuoc U(6)=1,2,3,6
vay n bang 1,2,3,6
bai 2
(2n-1).(y+3)=12
suy ra 2n-1 va y+3 thuoc uoc cua 12 =1,12,3,4,6,2
neu 2n-1 =1 suy ra n=1
thi y+3=12 suy ra y=9
neu 2n-1=12 suy ra n=11/2(ko thoa man )
neu 2n-1=3 suy ra n=2
thi y+3=4 suy ra y=1
neu 2n-1=4 ruy ra n=5/2( ko thoa man )
neu 2n-1=6 suy ra n=7/2( ko thoa man )
neu 2n-1=2 suy ra n=3/2 ( ko thoa man )
vay cac cap so n :y can tim la (2;1),(1;9)
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{n\left(n+2\right)}=\frac{5}{36}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n\left(n+2\right)}\right)=\frac{5}{36}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{18}\)
\(\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)
\(\frac{1}{n+2}=\frac{1}{18}\)
\(\Rightarrow n+2=18\Rightarrow n=16\)
\(\Rightarrow\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}=\frac{10}{36}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+2}=\frac{5}{18}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{n+2}=\frac{5}{18}\)
\(\Rightarrow\frac{n+2-3}{3\left(n+2\right)}=\frac{5}{18}\)
\(\Rightarrow\frac{n-1}{3n+6}=\frac{5}{18}\)
\(\Rightarrow18\left(n-1\right)=5\left(3n+6\right)\)
\(\Rightarrow18n-18=15n+30\)
\(\Rightarrow3n=48\)
\(\Rightarrow n=48:3\)
=>n=16
Xét công thức: 1+2+3+.....+n = n(n+1):2
1+2+.....+n = 36
=> n(n+1) : 2 = 36
=> n(n+1) = 36 x 2 = 72
Mà n(n+1) =8 x (8+1)
Vậy n = 8