Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-2y^2=1\)
\(\Leftrightarrow x^2-1=2y^2\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)=2y^2\)
Xét \(x=2\) thì \(3=2y^2\) (loại)
Xét \(x>2\) mà x là số ngyên tố nên \(x-1;x+1\) chẵn
\(\Rightarrow\left(x-1\right)\left(x+1\right)⋮4\)
\(\Leftrightarrow2y^2⋮4\Leftrightarrow y^2⋮2\) mà y là số NT nên \(y⋮2\) nên \(y=2\)
\(\Rightarrow x^2-1=8\Rightarrow x=3\)
Vậy \(x=3;y=2\)
Biến đổi bt tương đương : (x^2-1)/2 =y^2
Ta có: vì x,y là số nguyên dương nên
+) x>y và x phải là số lẽ.
Từ đó đặt x=2k+1 (k nguyên dương);
Biểu thức tương đương 2*k*(k+1)=y^2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Chào bạn, Ta sẽ cm bài toán này như sau
-Vì p ; q là các số nguyên tố lớn hơn 3 nên p;q có hai dạng là: \(3k\pm1\)
- Khi đó: \(p^2;q^2\equiv1\left(mod3\right)\Rightarrow p^2-q^2\equiv0\left(mod3\right)hay\)
\(p^2-q^2⋮3\left(1\right)\)
Mặt khác ta lại thấy : p ; q là các số nguyên tố lớn hơn 3\(\Rightarrow\)p ; q lẻ \(\Rightarrow p^2;q^2l\text{ẻ}\)\(\Rightarrow p^2-q^2ch\text{ẵn}\)\(\Rightarrow p^2-q^2⋮2\left(2\right)\)
Từ (1) ; (2) và (2;3)=1 ta suy ra
\(p^2-q^2⋮6\left(\text{đ}pcm\right)\)
Cảm ơn bạn đã theo dõi câu trả lời
Mik biết đáp án nhưng không biết cách làm
kết quả thì tớ bít nhưng cách làm cơ
x=3 còn y=2