K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

 f(x) = x + x³ + x^9 + x^27 + x^81 
a) f(x) = (x-1).g(x) + r 
f(1) = 1+1+1+1+1+1 = 0.g(1) + r 
=> dư là r = 5 

b) f(x) = (x²-1).h(x) + ax+b 
{ f(1) = 5 = 0 + a + b <=> { a = 5 
{ f(-1) = -5 = 0 -a + b ------ { b = 0 
vậy dư là r(x) = 5x 
 

30 tháng 11 2016

Đọc lại câu hỏi nhé =))) Đề bài mình là x+x^3+x^9+x^27+x^243 nhé k phải x^81. Và đề của mình k có câu a và b chỉ có một câu thôi =)) Chắc bạn chép y nguyên trên mạng ? =))

14 tháng 10 2019

a,f(x) chia g(x) dư ax+b

AH
Akai Haruma
Giáo viên
21 tháng 8 2024

Lời giải:
Theo định lý Bê-du về phép chia đa thức, thương của $f(x)$ khi chia cho $q(x)=x-1$ là:

$f(1)=1^3+1^9+1^{27}+1^{243}=4$

4 tháng 12 2019

\(x^{8n}+x^{4n}+1=x^{8n}-x^{2n}+x^{4n}-x^n+\left(x^{2n}+x^n+1\right)=x^{2n}\left(x^{6n}-1\right)+x^n\left(x^3-1\right)+\left(x^{2n}+x^n+1\right).\text{Dễ thấy các số hạng trên đều chia hết cho }x^{2n}+x^n+1\left(\text{ không dễ lắm đâu}\right)\)

31 tháng 5 2019

c) thay x=1 vào đa thức f(x) ta có:  f(1)=4.1^3-1^2+2.1-5

                                                             =4-2+2-5

                                                             =- 1

    vậy 1 k phải là nghiệm của đa thức f(x)

MÌNH CHỈ LÀM ĐƯỢC C THÔI HOK TỐT

31 tháng 5 2019

làm sai nha chỗ nào là 1 thì thay bằng -1 nha kq sẽ ra nha

28 tháng 10 2018

help me

31 tháng 8 2020

Đề có sao không bạn \(1\sqrt{2}=\sqrt{2}\)

Thấy hơi lạ, toán lớp 8 mak dùng căn như thế này thì lần đầu gặp . Nhưng mk vẫn làm cái dạng, ví dụ bạn viết sai đề thì có thể nhìn dạng mak làm lại 

Ta có đa thức chia g(x) là đa thức bậc 2 nên đa thức dư là đa thức có bậc không lớn hơn 1 . 

Do đó gọi đa thức dư là ax+b ( lưu ý ở đây không thêm điều kiện a khác 0 do ax+b cs thể là đa thức bậc 0)
Ta có 

\(x^{27}+x^9+x^3+x=\left(x^2-\sqrt{2}\right)q\left(x\right)+ax+b\)

\(x^{27}+x^9+x^3+x=\left(x-\sqrt[4]{2}\right)\left(x+\sqrt[4]{2}\right)q\left(x\right)+ax+b\left(1\right)\)

Nếu \(x=\sqrt[4]{2}\)thì (1) trở thành : \(5\cdot\sqrt[4]{2}+65\cdot\left(\sqrt[4]{2}\right)^3=a\cdot\sqrt[4]{2}+b\)

Nếu \(x=-\sqrt[4]{2}\)thì (1) trở thành \(-5\cdot\sqrt[4]{2}-65\cdot\left(\sqrt[4]{2}\right)^3=-a\cdot\sqrt[4]{2}+b\)

Từ đó ta suy ra được .\(a=5+65\cdot\sqrt{2}\)\(b=0\)

Vậy đa thức dư là \(\left(5+65\cdot\sqrt{2}\right)x\)

Lưu ý : mấy cái phép tính căn thức thì bạn tự search google coi nhé. Nếu mình làm ra thì dài lắm