Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}\left(-1\right)^3+a\cdot\left(-1\right)^2+b\cdot\left(-1\right)-2=0\\1^3+a\cdot1^2+b\cdot1-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=3\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)
Vậy: \(f\left(x\right)=x^3+2x^2-x-2\)
Đặt f(x)=0
\(\Leftrightarrow x^2\left(x+2\right)-\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
=>Nghiệm còn lại là x=-2
\(Q\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d\)
\(=-a+b-c+d\)
\(=b+d-c-a=0.\) ( vì a+c=b+d ) < đpcm >
tìm no của đa thức f(x)=x3+ax2+bx+c. Biết rằng đa thức có no và a+2b+4c=−12
no là nghiệm đấy
nghiệm là j =))
\(P\left(0\right)=0^5-2.0^2+7.0^4-9.0^3-\frac{1}{4}.0\)
\(=0-0+0-0-0=0\)
=> x = 0 là nghiệm của P (x) (1)
\(Q\left(x\right)=5.0^4-0^5+4.0^2-2.0^3-\frac{1}{4}\)
\(=0-0+0-0-\frac{1}{4}\)
\(=\frac{1}{4}\)
=> x = 0 không phải là nghiệm của Q (x) (2)
Từ (1) và (2) => x = 0 là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Thay x=0 vào đa thức P(x) ta được:
\(0^5-2.0^2+7.0^4-9.0^3-\frac{1}{4}.0\)
=\(0-0+0-0-0=0\)
Vậy x=0 là nghiệm của đa thức P(x)
Thay x=0 vào đa thức Q(x) ta được:
\(5.0^4-0^5+4.0^2-2.0^3-\frac{1}{4}\)
=\(\frac{1}{4}\)
Vậy x=0 không phải là nghiệm của đa thức Q(x)
Nhớ tick cho mình nha!