Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(A=1-\frac{1}{6}=\frac{5}{6}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{n}-\frac{1}{n+1}\)
\(B=1-\frac{1}{n+1}=\frac{n}{n+1}\)
Ta có: \(\frac{1}{1.2}=\frac{3}{1.2.3}\) ;\(\frac{1}{1.2+2.3}=\frac{3}{2.3.4}\); \(\frac{1}{2.3+3.4}=\frac{3}{3.4.5}\); ......;\(\frac{1}{1.2+2.3+3.4+...+n\left(n+1\right)}=\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
Ta lại có: \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\); \(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\); \(\frac{2}{3.4.5}=\frac{1}{3.4}-\frac{1}{4.5}\);....;\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)=> \(S=\frac{3}{4}-\frac{3}{2\left(n+1\right)\left(n+2\right)}< \frac{3}{4}\)
=> \(S< \frac{3}{4}\)
\(A=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right)n}\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n-1.n}\right)\)
\(=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=-\left(1-\frac{1}{n}\right)\)
\(=-\frac{n-1}{n}\)
\(A=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{\left(n-1\right).n}\)
\(A=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(A=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\right)\)
\(\Rightarrow A=-\left(1-\frac{1}{n}\right)\)
1 : dễ mà
= \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n}-\frac{1}{n+1}\)
1 phần 1 - 1 phần 2 = 1 phần 1.2 mà tương tự như thế đó
=> 1 - 1 phần n+1
đS
\(\frac{1}{1.2}+\frac{1}{2.3}+..........+\frac{1}{n.\left(n+1\right)}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+............+\frac{1}{n}-\frac{1}{n+1}\)
\(=1-\frac{1}{n+1}\)
\(=\frac{n}{n+1}\)
Bài 2:Ta có:\(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};.................;\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+.........+\frac{1}{\left(n-1\right).n}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...........+\frac{1}{n-1}-\frac{1}{n}\)
=\(1-\frac{1}{n}<1\)
Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+...........+\frac{1}{n^2}<1\)
\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)
\(\Leftrightarrow3x+\frac{3}{2}=1\)
\(\Leftrightarrow3x=-\frac{1}{2}\)
\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)
Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)
\(\Leftrightarrow x=99\)
a) => ( x + 1/2 ) . 3 = 1
=> 3x + 3/2 = 1
=> 3x = 1 - 3/2
=> 3x = -1/2
=> x = -1/2 : 3 = -1/6
bai 1: 1-1/2+1/2-1/3+1/3-1/4+...+1/n+1/n+1=1-1/n+1
bai 2: mk chua biet lam
kp đi BảoBảo
n= 33 bạn ơi mình chắc chắn 100% luôn