Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Bài 1 :
\(A=-x^2+6x+14\)
\(A=-x^2+6x-9+23\)
\(A=-\left(x^2-6x+9\right)+23\)
\(A=-\left(x-3\right)^2+23\)
Vì \(-\left(x-3\right)^2\le0\)
\(\Rightarrow A=-\left(x-3\right)^2+23\le23\)
\(\Rightarrow Max\left(A\right)=23\)
Bài 2 :
\(B=4x^2+12x+30\)
\(\Rightarrow B=4x^2+12x+9+21\)
\(\Rightarrow B=\left(2x+3\right)^2+21\)
Vì \(\left(2x+3\right)^2\ge0\)
\(\Rightarrow B=\left(2x+3\right)^2+21\ge21\)
\(\Rightarrow Min\left(B\right)=21\)
\(A=-x^2+6x+2=-\left(x-3\right)^2+11\le11\)
Vậy Max \(A=11\)khi \(x=3\)
\(B=-x^2-4x=-\left(x+2\right)^2+4\le4\)
Vậy Max \(B=4\)khi \(x=-2\)
\(C=-2x^2+6x+3=-2\left(x-\frac{3}{2}\right)^2+\frac{15}{2}\le\frac{15}{2}\)
Vậy Max \(C=\frac{15}{2}\)khi \(x=\frac{3}{2}\)
Giang sai rồi nhá , nó ko chỉ có max đâu , nó có cả Min nữa đấy
đúng đó trình bày lại đi xấu thật nhưng mik trình bày xấu hơn
Ta có : C = x2 - 10x
= x2 - 10x + 25 - 25
C = (x - 5)2 - 25
Vì \(\left(x-5\right)^2\ge0\forall x\in R\)
Nên : \(C=\left(x-5\right)^2-25\ge-25\forall x\in R\)
Vậy \(C_{min}=-25\) khi x - 5 = 0 => x = 5
Ta có : \(C=6x-x^2\)
\(=-\left(x^2-6x\right)\)
\(=-\left(x^2-6x+9-9\right)\)
\(=-\left(x^2-6x+9\right)+9\)( chuyển -9 ra ngoặc thành 9 )
\(C=-\left(x-3\right)^2+9\)
Vì \(-\left(x-3\right)^2\le0\forall x\in R\)
Nên : \(C=-\left(x-3\right)^2+9\le9\forall x\in R\)
Vậy \(C_{max}=9\) khi x - 3 = 0 => x = 3 .
Ta có :
\(A=\dfrac{6x+8}{x^2+1}\)
\(=\dfrac{\left(x^2+6x+9\right)-\left(x^2+1\right)}{x^2+1}\)
\(=\dfrac{\left(x+3\right)^2}{x^2+1}-1\)
Vì \(\left(x+3\right)^2\ge0\) nên \(\dfrac{\left(x+3\right)^2}{x^2+1}\)
nên \(\dfrac{\left(x+3\right)^2}{x^2+1}-1\ge-1\) hay \(A>-1\)
Dấu ' = ' xảy ra khi \(x=-3\)
Vậy \(A_{min}=-1\) khi \(x=-3\)
Ta có :
\(A=\dfrac{6x+8}{x^2+1}\)
\(=\dfrac{\left(-9+6x-1\right)\left(9x^2+9\right)}{x^2+1}\)
\(=-\dfrac{\left(3x-1\right)^2}{x+1}+9\)
Vì \(-\dfrac{\left(3x-1\right)^2}{x^2+1}\le0\) nên \(-\dfrac{\left(3x-1\right)^2}{x^2+1}+9\le9\)
Dấu '' = '' xảy ra khi \(x=\dfrac{1}{3}\)
Vậy \(A_{max}=9\) khi \(x=\dfrac{1}{3}\)