\(\sqrt{\left(1+2x\right)\left(3-x\right)}=2x^2-5x+3+m\)

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

ĐKXĐ: \(\dfrac{-1}{2}\le x\le3\)\(\Rightarrow x\in\left[\dfrac{-1}{2};3\right]\)

ta có pt\(\Leftrightarrow\)\(\sqrt{-\left(2x^2-5x-3\right)}=2x^2-5x-3+6+m\)

Đặt \(\sqrt{-\left(2x^2-5x-3\right)}=t\ge0 \)

\(\Rightarrow-t^2=\left(2x^2-5x-3\right)\)

khi đó pt trở thành: \(t=-t^2+6+m\Leftrightarrow t^2+t-6-m=0\left(1\right)\)

để pt đã cho có nghiệm thì pt (1) có nghiệm

khi đó \(\Delta'=m+15\ge0\Leftrightarrow m\ge15\)

Vậy ....

 

3 tháng 1 2021

ĐK: \(-\dfrac{1}{2}\le x\le3\)

\(pt\Leftrightarrow-2x^2+5x+3+\sqrt{-2x^2+5x+3}=6+m\)

Đặt \(\sqrt{-2x^2+5x+3}=t\left(0\le t\le\dfrac{7\sqrt{2}}{4}\right)\)

\(pt\Leftrightarrow6+m=f\left(t\right)=t^2+t\)

\(f\left(0\right)=0;f\left(\dfrac{7\sqrt{2}}{4}\right)=\dfrac{49+14\sqrt{2}}{8}\)

Yêu cầu bài toán thỏa mãn khi:

\(0\le6+m\le\dfrac{49+14\sqrt{2}}{8}\)

\(\Leftrightarrow-6\le m\le\dfrac{1+14\sqrt{2}}{8}\)

3 tháng 1 2021

\(\dfrac{7\sqrt{2}}{4}\) ở đâu ra v ạ :<<

NV
17 tháng 9 2022

a/ ĐKXĐ: \(x\ge\frac{1}{2}\)

\(\Leftrightarrow x+1-\sqrt{2x+2}+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\frac{x^2+2x+1-2x-2}{x+1+\sqrt{2x+2}}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{x+1+\sqrt{2x+2}}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

\(\Rightarrow x=1\)

2/ ĐKXĐ:\(\left[{}\begin{matrix}x=0\\x\ge2\\x\le-3\end{matrix}\right.\)

- Nhận thấy \(x=0\) là 1 nghiệm

- Với \(x\ge2\):

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-2}=2\sqrt{x+3}=\sqrt{4x+12}\)

Ta có \(VT\le\sqrt{2\left(x-1+x-2\right)}=\sqrt{4x-6}< \sqrt{4x+12}\)

\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm

- Với \(x\le-3\)

\(\Leftrightarrow\sqrt{1-x}+\sqrt{2-x}=2\sqrt{-x-3}\)

\(\Leftrightarrow3-2x+2\sqrt{x^2-3x+2}=-4x-12\)

\(\Leftrightarrow2\sqrt{x^2-3x+2}=-2x-15\) (\(x\le-\frac{15}{2}\))

\(\Leftrightarrow4x^2-12x+8=4x^2+60x+225\)

\(\Rightarrow x=-\frac{217}{72}\left(l\right)\)

Vậy pt có nghiệm duy nhất \(x=0\)

NV
17 tháng 9 2022

Bài 3: ĐKXĐ: \(-3\le x\le6\)

Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\) \(\Rightarrow3\le t\le3\sqrt{2}\)

\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{9-t^2}{2}\)

Phương trình trở thành:

\(t+\frac{9-t^2}{2}=m\Leftrightarrow-t^2+2t+9=2m\) (2)

a/ Với \(m=3\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)

\(\Rightarrow\sqrt{3+x}+\sqrt{6-x}=3\)

\(\Leftrightarrow2\sqrt{\left(3+x\right)\left(6-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

b/ Xét hàm \(f\left(t\right)=-t^2+2t+9\) trên \(\left[3;3\sqrt{2}\right]\)

\(-\frac{b}{2a}=1< 3\Rightarrow\) hàm số nghịch biến trên \(\left[3;3\sqrt{2}\right]\)

\(f\left(3\right)=6\) ; \(f\left(3\sqrt{2}\right)=6\sqrt{2}-9\)

\(\Rightarrow6\sqrt{2}-9\le2m\le6\Rightarrow\frac{6\sqrt{2}-9}{2}\le m\le3\)

Bài 4 làm tương tự bài 3

26 tháng 1 2018

Bài 1 :

Đặt f(x) = \(\sqrt{x}-\sqrt{x-1}\) tập xác định [1;+)

Dễ thấy f(x) > 0

f(x) = \(\left(\sqrt{x}-1\right)-\sqrt{x-1}+1=\dfrac{x-1}{\sqrt{x}+1}-\sqrt{x-1}+1\)

= \(\sqrt{x-1}\left(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}-1\right)+1\le\sqrt{x-1}\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)+1=\dfrac{-\sqrt{x-1}}{\sqrt{x+1}}+1\le1\)

Và f(1) = 1

Vậy f(x) có tập giá trị là (0;1]

* Nếu m \(\ge1\) thì bpt vô nghiệm

* Nếu m < 1 thì bpt có nghiệm

Vậy tập hợp m thỏa mãn là (0;1)

(0;1)

7 tháng 2 2018

ei ~ atr ăn cắp ảnh nka , chưa xin phép eg , atr lấy ảnh eg từ khi nào vậy , khai mau

NV
23 tháng 9 2020

ĐKXĐ: \(-\frac{1}{2}\le x\le3\)

\(\Leftrightarrow-2x^2+5x+3+\sqrt{-2x^2+5x+3}-3=m\)

Đặt \(\sqrt{-2x^2+5x+3}=t\Rightarrow0\le t\le\frac{7\sqrt{2}}{4}\)

\(\Rightarrow t^2+t-3=m\)

Xét \(f\left(t\right)=t^2+t-3\) trên \(\left[0;\frac{7\sqrt{2}}{4}\right]\)

\(-\frac{b}{2a}=-\frac{1}{2}< 0\Rightarrow f\left(t\right)\) đồng biến trên \(\left[0;\frac{7\sqrt{2}}{4}\right]\)

\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(\frac{7\sqrt{2}}{4}\right)\Leftrightarrow-3\le f\left(t\right)\le\frac{25+14\sqrt{2}}{8}\)

\(\Rightarrow-3\le m\le\frac{25+14\sqrt{2}}{8}\)

3 tháng 1 2021

tại sao điều kiện của t lại phải là bé hơn hoặc bằng \(\dfrac{7\sqrt{2}}{4}\) vậy ạ

NV
3 tháng 4 2020

\(\Leftrightarrow-2x^2+5x+3+\sqrt{-2x^2+5x+3}-6>m\)

Đặt \(\sqrt{-2x^2+5x+3}=t\Rightarrow\left\{{}\begin{matrix}t\ge0\\t=\sqrt{-2x^2+5x+3}=\sqrt{\frac{49}{8}-2\left(x-\frac{5}{4}\right)^2}\le\frac{7\sqrt{2}}{4}\end{matrix}\right.\)

\(\Rightarrow t\in\left[0;\frac{7\sqrt{2}}{4}\right]\)

BPT trở thành: tìm m để \(f\left(t\right)=t^2+t+6>m\) \(\forall t\in\left[0;\frac{7\sqrt{2}}{4}\right]\)

\(\Leftrightarrow m< \min\limits_{\left[0;\frac{7\sqrt{2}}{4}\right]}f\left(t\right)\)

Xét hàm \(f\left(t\right)=t^2+t+6\) trên \(\left[0;\frac{7\sqrt{2}}{4}\right]\)

Do \(-\frac{b}{2a}=-\frac{1}{2}\notin\left[0;\frac{7\sqrt{2}}{4}\right]\) nên cực trị sẽ rơi vào 2 đầu mút

\(f\left(0\right)=6\) ; \(f\left(\frac{7\sqrt{2}}{4}\right)=\frac{97+14\sqrt{2}}{8}\)

\(\Rightarrow\min\limits_{\left[0;\frac{7\sqrt{2}}{4}\right]}f\left(t\right)=f\left(0\right)=6\)

\(\Rightarrow m< 6\)

NV
20 tháng 9 2020

\(Fe+Fe^{3+}\rightarrow2Fe^{2+}\)

2 chất này phản ứng được do vị trí của các ion trong dãy điện hóa

(Cái này bạn cần học dãy điện hóa của kim loại)

4 tháng 2 2020

Viết đề mà ko ai đọc được vậy :v

a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)

\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)

\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)

\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )

Vậy...

4 tháng 2 2020

\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)

<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)

Xét \(\sqrt{x^2+1}+3-x=0\)

<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))

Xét \(\sqrt{x^2+1}+3-x\ne0\)

pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)

<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)

<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)

<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)

pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)

<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))

=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)

<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)

<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))

=>(2) vô nghiệm

Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)

P/s: Hơi dài :)