Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(-\dfrac{1}{2}\le x\le3\)
\(pt\Leftrightarrow-2x^2+5x+3+\sqrt{-2x^2+5x+3}=6+m\)
Đặt \(\sqrt{-2x^2+5x+3}=t\left(0\le t\le\dfrac{7\sqrt{2}}{4}\right)\)
\(pt\Leftrightarrow6+m=f\left(t\right)=t^2+t\)
\(f\left(0\right)=0;f\left(\dfrac{7\sqrt{2}}{4}\right)=\dfrac{49+14\sqrt{2}}{8}\)
Yêu cầu bài toán thỏa mãn khi:
\(0\le6+m\le\dfrac{49+14\sqrt{2}}{8}\)
\(\Leftrightarrow-6\le m\le\dfrac{1+14\sqrt{2}}{8}\)
a/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow x+1-\sqrt{2x+2}+\sqrt{2x-1}-1=0\)
\(\Leftrightarrow\frac{x^2+2x+1-2x-2}{x+1+\sqrt{2x+2}}+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{x+1}{x+1+\sqrt{2x+2}}+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
\(\Rightarrow x=1\)
2/ ĐKXĐ:\(\left[{}\begin{matrix}x=0\\x\ge2\\x\le-3\end{matrix}\right.\)
- Nhận thấy \(x=0\) là 1 nghiệm
- Với \(x\ge2\):
\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-2}=2\sqrt{x+3}=\sqrt{4x+12}\)
Ta có \(VT\le\sqrt{2\left(x-1+x-2\right)}=\sqrt{4x-6}< \sqrt{4x+12}\)
\(\Rightarrow VT< VP\Rightarrow\) pt vô nghiệm
- Với \(x\le-3\)
\(\Leftrightarrow\sqrt{1-x}+\sqrt{2-x}=2\sqrt{-x-3}\)
\(\Leftrightarrow3-2x+2\sqrt{x^2-3x+2}=-4x-12\)
\(\Leftrightarrow2\sqrt{x^2-3x+2}=-2x-15\) (\(x\le-\frac{15}{2}\))
\(\Leftrightarrow4x^2-12x+8=4x^2+60x+225\)
\(\Rightarrow x=-\frac{217}{72}\left(l\right)\)
Vậy pt có nghiệm duy nhất \(x=0\)
Bài 3: ĐKXĐ: \(-3\le x\le6\)
Đặt \(\sqrt{3+x}+\sqrt{6-x}=t\) \(\Rightarrow3\le t\le3\sqrt{2}\)
\(t^2=9+2\sqrt{\left(3+x\right)\left(6-x\right)}\Rightarrow-\sqrt{\left(3+x\right)\left(6-x\right)}=\frac{9-t^2}{2}\)
Phương trình trở thành:
\(t+\frac{9-t^2}{2}=m\Leftrightarrow-t^2+2t+9=2m\) (2)
a/ Với \(m=3\Rightarrow t^2-2t-3=0\Rightarrow\left[{}\begin{matrix}t=-1\left(l\right)\\t=3\end{matrix}\right.\)
\(\Rightarrow\sqrt{3+x}+\sqrt{6-x}=3\)
\(\Leftrightarrow2\sqrt{\left(3+x\right)\left(6-x\right)}=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
b/ Xét hàm \(f\left(t\right)=-t^2+2t+9\) trên \(\left[3;3\sqrt{2}\right]\)
\(-\frac{b}{2a}=1< 3\Rightarrow\) hàm số nghịch biến trên \(\left[3;3\sqrt{2}\right]\)
\(f\left(3\right)=6\) ; \(f\left(3\sqrt{2}\right)=6\sqrt{2}-9\)
\(\Rightarrow6\sqrt{2}-9\le2m\le6\Rightarrow\frac{6\sqrt{2}-9}{2}\le m\le3\)
Bài 4 làm tương tự bài 3
Bài 1 :
Đặt f(x) = \(\sqrt{x}-\sqrt{x-1}\) tập xác định [1;+∞)
Dễ thấy f(x) > 0
f(x) = \(\left(\sqrt{x}-1\right)-\sqrt{x-1}+1=\dfrac{x-1}{\sqrt{x}+1}-\sqrt{x-1}+1\)
= \(\sqrt{x-1}\left(\dfrac{\sqrt{x-1}}{\sqrt{x+1}}-1\right)+1\le\sqrt{x-1}\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)+1=\dfrac{-\sqrt{x-1}}{\sqrt{x+1}}+1\le1\)
Và f(1) = 1
Vậy f(x) có tập giá trị là (0;1]
* Nếu m \(\ge1\) thì bpt vô nghiệm
* Nếu m < 1 thì bpt có nghiệm
Vậy tập hợp m thỏa mãn là (0;1)
(0;1)
ei ~ atr ăn cắp ảnh nka , chưa xin phép eg , atr lấy ảnh eg từ khi nào vậy , khai mau
ĐKXĐ: \(-\frac{1}{2}\le x\le3\)
\(\Leftrightarrow-2x^2+5x+3+\sqrt{-2x^2+5x+3}-3=m\)
Đặt \(\sqrt{-2x^2+5x+3}=t\Rightarrow0\le t\le\frac{7\sqrt{2}}{4}\)
\(\Rightarrow t^2+t-3=m\)
Xét \(f\left(t\right)=t^2+t-3\) trên \(\left[0;\frac{7\sqrt{2}}{4}\right]\)
\(-\frac{b}{2a}=-\frac{1}{2}< 0\Rightarrow f\left(t\right)\) đồng biến trên \(\left[0;\frac{7\sqrt{2}}{4}\right]\)
\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(\frac{7\sqrt{2}}{4}\right)\Leftrightarrow-3\le f\left(t\right)\le\frac{25+14\sqrt{2}}{8}\)
\(\Rightarrow-3\le m\le\frac{25+14\sqrt{2}}{8}\)
\(\Leftrightarrow-2x^2+5x+3+\sqrt{-2x^2+5x+3}-6>m\)
Đặt \(\sqrt{-2x^2+5x+3}=t\Rightarrow\left\{{}\begin{matrix}t\ge0\\t=\sqrt{-2x^2+5x+3}=\sqrt{\frac{49}{8}-2\left(x-\frac{5}{4}\right)^2}\le\frac{7\sqrt{2}}{4}\end{matrix}\right.\)
\(\Rightarrow t\in\left[0;\frac{7\sqrt{2}}{4}\right]\)
BPT trở thành: tìm m để \(f\left(t\right)=t^2+t+6>m\) \(\forall t\in\left[0;\frac{7\sqrt{2}}{4}\right]\)
\(\Leftrightarrow m< \min\limits_{\left[0;\frac{7\sqrt{2}}{4}\right]}f\left(t\right)\)
Xét hàm \(f\left(t\right)=t^2+t+6\) trên \(\left[0;\frac{7\sqrt{2}}{4}\right]\)
Do \(-\frac{b}{2a}=-\frac{1}{2}\notin\left[0;\frac{7\sqrt{2}}{4}\right]\) nên cực trị sẽ rơi vào 2 đầu mút
\(f\left(0\right)=6\) ; \(f\left(\frac{7\sqrt{2}}{4}\right)=\frac{97+14\sqrt{2}}{8}\)
\(\Rightarrow\min\limits_{\left[0;\frac{7\sqrt{2}}{4}\right]}f\left(t\right)=f\left(0\right)=6\)
\(\Rightarrow m< 6\)
\(Fe+Fe^{3+}\rightarrow2Fe^{2+}\)
2 chất này phản ứng được do vị trí của các ion trong dãy điện hóa
(Cái này bạn cần học dãy điện hóa của kim loại)
Viết đề mà ko ai đọc được vậy :v
a) \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)
\(\Leftrightarrow3x^2+2x+3-3x\sqrt{x^2+3}-\sqrt{x^2+3}=0\)
\(\Leftrightarrow x^2+3-x\sqrt{x^2+3}-\sqrt{x^2+3}-2x\sqrt{x^2+3}+2x^2+2x=0\)
\(\Leftrightarrow\sqrt{x^2+3}\cdot\left(\sqrt{x^2+3}-x-1\right)-2x\cdot\left(\sqrt{x^2+3}-x-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x^2+3}-x-1\right)\left(\sqrt{x^2+3}-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=x+1\left(x\ge-1\right)\\\sqrt{x^2+3}=2x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=1\end{matrix}\right.\)\(\Leftrightarrow x=1\) ( thỏa mãn )
Vậy...
\(\left(4x-1\right)\sqrt{x^2+1}=2x^2+2x+1\) (1)
<=>\(\left(4x-1\right)\left[\sqrt{x^2+1}-\left(3-x\right)\right]=6x^2-11x+4\)
Xét \(\sqrt{x^2+1}+3-x=0\)
<=> \(x^2+1=x^2-6x+9\) <=>\(x=\frac{4}{3}\)(tm phương trình (1))
Xét \(\sqrt{x^2+1}+3-x\ne0\)
pt <=>\(\frac{\left(4x-1\right)\left(x^2+1-x^2+6x-9\right)}{\sqrt{x^2+1}+3-x}=\left(3x-4\right)\left(2x-1\right)\)
<=> \(\frac{\left(4x-1\right)\left(6x-8\right)}{\sqrt{x^2+1}+3-x}-\left(3x-4\right)\left(2x-1\right)=0\)
<=>\(\left(3x-4\right)\left(\frac{2\left(4x-1\right)}{\sqrt{x^2+1}+3-x}-2x+1\right)=0\)
<=>\(\left[{}\begin{matrix}x=\frac{4}{3}\left(tm\right)\\\frac{8x-2}{\sqrt{x^2+1}+3-x}-2x+1=0\left(2\right)\end{matrix}\right.\)
pt (2) <=>\(8x-2=\left(2x-1\right)\sqrt{x^2+1}-2x^2+7x-3\)
<=>\(2x^2+x+1=\left(2x-1\right)\sqrt{x^2+1}\)( đk: \(x\ge\frac{1}{2}\))
=>\(4x^4+x^2+1+4x^3+2x+4x^2=\left(2x-1\right)^2\left(x^2+1\right)\)
<=>\(4x^4+4x^3+5x^2+2x+1=4x^4-4x^3+5x^2-4x+1\)
<=>\(8x^3+6x=0\) <=> \(x\left(8x^2+6\right)=0\) <=>x=0 (do 8x2+6>0) (không t/m (2))
=>(2) vô nghiệm
Vậy pt có tập nghiệm \(S=\left\{\frac{4}{3}\right\}\)
P/s: Hơi dài :)
ĐKXĐ: \(\dfrac{-1}{2}\le x\le3\)\(\Rightarrow x\in\left[\dfrac{-1}{2};3\right]\)
ta có pt\(\Leftrightarrow\)\(\sqrt{-\left(2x^2-5x-3\right)}=2x^2-5x-3+6+m\)
Đặt \(\sqrt{-\left(2x^2-5x-3\right)}=t\ge0 \)
\(\Rightarrow-t^2=\left(2x^2-5x-3\right)\)
khi đó pt trở thành: \(t=-t^2+6+m\Leftrightarrow t^2+t-6-m=0\left(1\right)\)
để pt đã cho có nghiệm thì pt (1) có nghiệm
khi đó \(\Delta'=m+15\ge0\Leftrightarrow m\ge15\)
Vậy ....