Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để PT có 2 nghiệm phân biệt thì
\(\Delta'=\left(m-2\right)^2-\left(m^2-2m+4\right)>0\)
\(\Leftrightarrow m< 0\)
Theo vi et ta có:
\(\hept{\begin{cases}x_1+x_2=-2m+4\\x_1.x_2=m^2-2m+4\end{cases}}\)
Theo đề bài thì
\(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-2x_1.x_2}-\frac{1}{x_1.x_2}=\frac{15}{m}\)
\(\Leftrightarrow\frac{2}{\left(-2m+4\right)^2-2\left(m^2-2m+4\right)}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow\frac{1}{m^2-6m+4}-\frac{1}{m^2-2m+4}=\frac{15}{m}\)
\(\Leftrightarrow15m^4-120m^3+296m^2-480m+240=0\)
Với m < 0 thì VP > 0
Vậy không tồn tại m để thỏa bài toán.
a: TH1: m=-1
Pt trở thành \(-3x-2\cdot\left(-1\right)-1=0\)
=>-3x+1=0
hay x=1/3(nhận)
Th2: m<>-1
\(\text{Δ}=\left(3m\right)^2-4\left(m+1\right)\left(-2m-1\right)\)
\(=9m^2+\left(4m+4\right)\left(2m+1\right)\)
\(=9m^2+8m^2+4m+8m+4\)
\(=17m^2+12m+4\)
Đặt \(17m^2+12m+4=0\)
\(\text{Δ}=12^2-4\cdot17\cdot4=-128< 0\)
Do đó: Phương trình vô nghiệm
b:
TH2: m<>1/2
\(\text{Δ}=\left(-m\right)^2+4\left(m+1\right)\left(2m-1\right)\)
\(=m^2+\left(4m+4\right)\left(2m-1\right)\)
\(=m^2+8m^2-4m+8m-4\)
\(=9m^2+4m-4\)
Đặt \(9m^2+4m-4=0\)
\(\text{Δ}=4^2-4\cdot9\cdot\left(-4\right)=160>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-4-4\sqrt{10}}{18}=\dfrac{-2-\sqrt{10}}{9}\left(loại\right)\\m_2=\dfrac{\sqrt{10}-2}{9}\left(nhận\right)\end{matrix}\right.\)
Do đó: Phương trình (1) có hai nghiệm phân biệt
toán mấy v chế nếu toán 7 thì em có thể ngoài ra thì ... bằng chéo