Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(f\left(x\right)=x^2-2mx+3m-2>0\) \(\forall x< 4\) thì:
\(\left[{}\begin{matrix}\Delta'< 0\\\left\{{}\begin{matrix}\Delta'=0\\\frac{-b}{2a}\ge4\end{matrix}\right.\\\left\{{}\begin{matrix}\Delta'>0\\4< x_1< x_2\end{matrix}\right.\end{matrix}\right.\)
TH1: \(\Delta'< 0\Rightarrow m^2-3m+2< 0\Rightarrow1< m< 2\)
TH2: \(\left\{{}\begin{matrix}\Delta'=0\\\frac{-b}{2a}\ge4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m^2-3m+2=0\\m\ge4\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
TH3: \(\left\{{}\begin{matrix}\Delta'>0\\4< x_1< x_2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\a.f\left(4\right)>0\\\frac{S}{2}>4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-3m+2>0\\16-8m+3m-2>0\\m>4\end{matrix}\right.\)
\(\Rightarrow\) ko có m thỏa mãn
Vậy với \(1< m< 2\) thì \(f\left(x\right)>0\) \(\forall x< 4\)
Xét tử thức: \(-x^2+x-1=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}< 0,\forall x\)
Vậy đề bài tương đương: \(x^2+\left(m+1\right)x+2m+7>0,\forall x\)
\(\Leftrightarrow\Delta< 0\Leftrightarrow\left(m+1\right)^2-4\left(2m+7\right)< 0\Leftrightarrow-3< m< 9\)
a)
Để \(5x^2-x+m>0\) thì:
\(\Delta< 0\Rightarrow1-20m< 0\Rightarrow m>\dfrac{1}{20}\)
b)
\(mx^2-10x-5< 0\)
Xét \(m=0\) ta có: \(-10x-5< 0\)\(\Leftrightarrow x>\dfrac{1}{2}\) (loại)
Xét \(m\ne0\). Theo định lý về dấu tam thức bậc hai:
\(mx^2-10x-5< 0\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\25+5m< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\m< -5\end{matrix}\right.\)\(\Leftrightarrow m< -5\).
Vậy với \(m< -5\) thì \(mx^2-10x-5< 0\).
\(\Leftrightarrow\frac{3x^2+2x+12}{\left|x^2-mx+4\right|}\ge2\Leftrightarrow3x^2+2x+12\ge2\left|x^2-mx+4\right|\)
\(\Leftrightarrow\left(3x^2+2x+12\right)^2\ge\left(2x^2-2mx+8\right)^2\)
\(\Leftrightarrow\left(x^2+2\left(m+1\right)x+4\right)\left(5x^2-2\left(m-1\right)x+20\right)\ge0\) \(\forall x\)
Do hệ số của \(x^2\) ở 2 nhân tử đều dương nên điều này xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x^2+2\left(m+1\right)x+4\ge0\\5x^2-2\left(m-1\right)x+20\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'_1=\left(m+1\right)^2-4\le0\\\Delta'_2=\left(m-1\right)^2-100\le0\end{matrix}\right.\) \(\Rightarrow-3\le m\le1\)
2|x-m|+x2+2 > 2mx
<=> 2x-2m+x2+2-2mx >0
<=> x2+2(1-m)x+2 -2m >0
Ta có: a+b+c >0 pt luôn có 2 nghiệm
x1=1; x2=2-2m
=>2-2m \(\ne\)0 => m\(\ne\)1
=> m\(\in\varnothing\)