Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:
a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)
Số hạng chứa \(x^8\) có:
\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)
Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)
b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)
\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)
\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)
Số hạng chứa \(x^5\) có:
\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)
Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)
\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)
Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn
Vậy trong khai triển trên ko có số hạng chứa \(x^8\)
b/ \(\left(1-x^2+x^4\right)^{16}\)
\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)
\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)
Hệ số của số hạng chứa \(x^{16}\):
\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)
c/ SHTQ của khai triển \(\left(1-2x\right)^5\) là \(C_5^k\left(-2\right)^kx^k\)
Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)
SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)
Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)
\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)
\(A=\left(1+x\left(1+x\right)\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^kx^k\left(1+x\right)^k=\sum\limits^{10}_{k=0}\left(\sum\limits^k_{i=0}C_{10}^kC_k^ix^{i+k}\right)\)
Do \(\left\{{}\begin{matrix}0\le i\le k\le10\\i+k=10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;9\right);\left(2;8\right);\left(3;7\right);\left(4;6\right);\left(5;5\right)\)
Hệ số: \(C_{10}^9C_9^1+C_{10}^8C_8^2+C_{10}^7C_7^3+C_{10}^6C_6^4+C_{10}^5C_5^5\)
(x³+xy)15 = (15)∑(k=0) Ck15 . (x³)(15-k). (xy)k
= (15)Σ(k=0) Ck15 . x45-3k. xk . yk
= (15)Σ(k=0) Ck15 . x45-2k . yk
⇒ 45-2k = 25
Và k=10 ⇒ k=10 ⇒ ℂ1015
\(x\left(....+3x+...\right)+x^2\left(.....-32\right)=......+3x^2-32x^2=-29x^2\)
theo tam giác pascal mà làm nhé bạn
Công thức tổng quát của khai triển là : \(C_n^ka^{n-k}b^k\left(0\le k\le n\right)\)
Theo bài ra ta có : \(C^k_{10}\left(\frac{1}{3}\right)^{10-k}\left(\frac{2}{3}x\right)^k=C^k_{10}\left(\frac{1}{3}\right)^{10-k}\left(\frac{2}{3}\right)^kx^k\)
Để hệ số khai triển là lớn nhất thì ứng với k=5 (Vì theo tam giác pascal số mũ là số chẵn thì có một hệ số lớn nhất)
ta có : \(x^k=x^5\Leftrightarrow k=5\)
Vậy hệ số cần tìm là : \(C^5_{10}\left(\frac{1}{3}\right)^5\left(\frac{2}{3}\right)^5=\frac{896}{6561}\)