K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2016

theo tam giác pascal mà làm nhé bạn

23 tháng 5 2016

Công thức tổng quát của khai triển là : \(C_n^ka^{n-k}b^k\left(0\le k\le n\right)\)

Theo bài ra ta có : \(C^k_{10}\left(\frac{1}{3}\right)^{10-k}\left(\frac{2}{3}x\right)^k=C^k_{10}\left(\frac{1}{3}\right)^{10-k}\left(\frac{2}{3}\right)^kx^k\)

Để hệ số khai triển là lớn nhất thì ứng với k=5 (Vì theo tam giác pascal số mũ là số chẵn thì có một hệ số lớn nhất)

ta có : \(x^k=x^5\Leftrightarrow k=5\)

Vậy hệ số cần tìm là : \(C^5_{10}\left(\frac{1}{3}\right)^5\left(\frac{2}{3}\right)^5=\frac{896}{6561}\)

NV
12 tháng 11 2019

Làm xong rồi nhấn gửi thì lỗi, làm lại từ đầu nên chỉ làm 2 câu thôi, 2 câu sau bạn tự làm tương tự:

a/ \(\sum\limits^8_{k=0}C_8^kx^{2k}\left(1-x\right)^k=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-1\right)^ix^{2k+i}\)

Số hạng chứa \(x^8\) có:

\(\left\{{}\begin{matrix}2k+i=8\\0\le i\le k\le8\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;4\right);\left(2;3\right)\)

Hệ số: \(C_8^4C_4^0.\left(-1\right)^0+C_8^3C_3^2.\left(-1\right)^2\)

b/ \(1+x+x^2+x^3=\left(1+x\right)\left(1+x^2\right)\)

\(\Rightarrow\left(1+x+x^2+x^3\right)^{10}=\left(1+x\right)^{10}\left(1+x^2\right)^{10}\)

\(=\sum\limits^{10}_{k=0}C_{10}^kx^k\sum\limits^{10}_{i=0}C_{10}^ix^{2i}=\sum\limits^{10}_{k=0}\sum\limits^{10}_{i=0}C_{10}^kC_{10}^ix^{2i+k}\)

Số hạng chứa \(x^5\) có:

\(\left\{{}\begin{matrix}2i+k=5\\0\le k\le10\\0\le i\le10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(0;5\right);\left(1;3\right);\left(2;1\right)\)

Hệ số: \(C_{10}^0C_{10}^5+C_{10}^1C_{10}^3+C_{10}^2C_{10}^1\)

NV
6 tháng 11 2019

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

29 tháng 11 2019

em không hiểu phần b ạ

NV
28 tháng 10 2019

\(A=\left(1+x\left(1+x\right)\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^kx^k\left(1+x\right)^k=\sum\limits^{10}_{k=0}\left(\sum\limits^k_{i=0}C_{10}^kC_k^ix^{i+k}\right)\)

Do \(\left\{{}\begin{matrix}0\le i\le k\le10\\i+k=10\\i;k\in N\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;9\right);\left(2;8\right);\left(3;7\right);\left(4;6\right);\left(5;5\right)\)

Hệ số: \(C_{10}^9C_9^1+C_{10}^8C_8^2+C_{10}^7C_7^3+C_{10}^6C_6^4+C_{10}^5C_5^5\)

4 tháng 12 2021

(i;k)=(0;10) nữa đc mà đk ạ

 

6 tháng 11 2016

(x³+xy)15 = (15)∑(k=0) Ck15 . (x³)(15-k). (xy)k
= (15)Σ(k=0) Ck15 . x45-3k. xk . yk
= (15)Σ(k=0) Ck15 . x45-2k . yk
⇒ 45-2k = 25
Và k=10 ⇒ k=10 ⇒ ℂ1015

23 tháng 12 2016

1) 216

15 tháng 6 2017

Ta có (x-2y)4 =[x+(-2y)]4=C4k.x4-k.(-2y)k

Hệ số của số hạng có xy3 ứng với : 4-k=1 va k=3 <=> k=3

Vậy hệ số của xy3 là : C43.(-2)3=-32

15 tháng 6 2017

\(x\left(....+3x+...\right)+x^2\left(.....-32\right)=......+3x^2-32x^2=-29x^2\)

15 tháng 6 2017

cm ơn rất nhìu