\(M=2018+\left(x-2019\right)^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

Theo Cool Kid ĐZ ta có:

\(\left(x-2019\right)^2\ge0\Rightarrow\left(x-2019\right)^2+2018\ge2018\)

Dấu "=" xảy ra tại \(x=2019\)

P/S:Thiếu dòng đầu tiên sẽ bị trừ nửa số điểm đó !

16 tháng 10 2019

\(M=2018+\left(x-2019\right)^2\ge2018\)

Dấu bằng xảy ra 

\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)

Vậy.............................

zZz Cool Kid zZz chất :v~

8 tháng 11 2018

1) Vì \(\left|x-2018\right|\) \(\ge\) \(\forall\) x \(\in\) Z
=> \(\left|x-2018\right|+2019\) \(\ge\) 2019
Vậy để biểu thức đạt GTNN \(\Leftrightarrow\)\(\left|x-2018\right|\) = 0
=> x - 2018 = 0
=> x = 0 + 2018
=> x = 2018
Thay x vào biểu thức, ta có:
\(\left|2018-2018\right|\) + 2019
= 0 + 2019
= 2019

18 tháng 11 2022

R=|2x-4|+|2x+5|+1

=|4-2x|+|2x+5|+1

=>R>=|4-2x+2x+5|+1=10

Dấu = xảy ra khi (2x-4)(2x+5)<=0

=>-5/2<=x<=2

c: Q=|x+1/3|+|2/3-x|>=|x+1/3+2/3-x|=1

Dấu = xảy ra khi (x+1/3)(x-2/3)<=0

=>-1/3<=x<=2/3

6 tháng 3 2020

\(A=\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)

\(A=\frac{\left|x-2017\right|+2019-1}{\left|x-2017\right|+2019}\)

\(A=1-\frac{1}{\left|x-2017\right|+2019}\)

A nhỏ nhất khi \(1-\frac{1}{\left|x-2017\right|+2019}\)nhỏ nhất

khi \(\frac{1}{\left|x-2017\right|+2019}\)lớn nhất

khi \(\left|x-2017\right|+2019\)nhỏ nhất

mà |x - 2017| \(\ge0\)

=> |x - 2017| + 2019 \(\ge2019\)

Vậy A nhỏ nhất khi A = 2019 khi x - 2017 = 0 => x = 2017

6 tháng 3 2020

\(A=\frac{\backslash x-2017\backslash+2018}{\backslash x-2017\backslash+2019}\) 

\(A=\frac{2018}{2019}\)

11 tháng 8 2018

a, Ta có : y^2 lớn hơn hoặc bằng 0 với mọi y

=> -y^2 nhỏ hơn hoặc bằng 0 với mọi y 

=>-2-y^2 nhỏ hơn hoặc bằng -2 với mọi y

=> H nhỏ hơn hoặc -2 với mọi y

Dấu "=" xảy ra <=>y^2=0 <=>y=0

Vậy GTLN của H là -2 tại y=0

25 tháng 8 2020

F = | 2x - 2 | + | 2x - 2003 |

F = | 2x - 2 | + | -( 2x - 2003 ) |

F = | 2x - 2 | + | 2003 - 2x |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

F = | 2x - 2 | + | 2003 - 2x | ≥ | 2x - 2 + 2003 - 2x | = | 2001 | = 2001

Đẳng thức xảy ra khi ab ≥ 0

=> ( 2x - 2 )( 2003 - 2x ) ≥ 0

Xét hai trường hợp :

1/ \(\hept{\begin{cases}2x-2\ge0\\2003-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}2x\ge2\\-2x\ge-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\le\frac{2003}{2}\end{cases}\Rightarrow}1\le x\le\frac{2003}{2}\)

2/ \(\hept{\begin{cases}2x-2\le0\\2003-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}2x\le2\\-2x\le-2003\end{cases}}\Rightarrow\hept{\begin{cases}x\le1\\x\ge\frac{2003}{2}\end{cases}}\)( loại )

Vậy MinF = 2001 <=> \(1\le x\le\frac{2003}{2}\)

G = | 2x - 3 | + 1/2| 4x - 1 |

G = | 2x - 3 | + | 2x - 1/2 |

G = | -( 2x - 3 ) | + | 2x - 1/2 |

G = | 3 - 2x | + | 2x - 1/2 |

Áp dụng bất đẳng thức | a | + | b | ≥ | a + b | ta có :

G = | 3 - 2x | + | 2x - 1/2 | ≥ | 3 - 2x + 2x - 1/2 | = | 5/2 | = 5/2

Đẳng thức xảy ra khi ab ≥ 0 

=> ( 3 - 2x )( 2x - 1/2 ) ≥ 0

Xét 2 trường hợp :

1/ \(\hept{\begin{cases}3-2x\ge0\\2x-\frac{1}{2}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\le\frac{3}{2}\\x\ge\frac{1}{4}\end{cases}}\Rightarrow\frac{1}{4}\le x\le\frac{3}{2}\)

2/ \(\hept{\begin{cases}3-2x\le0\\2x-\frac{1}{2}\le0\end{cases}}\Rightarrow\hept{\begin{cases}-2x\le-3\\2x\le\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x\ge\frac{3}{2}\\x\le\frac{1}{4}\end{cases}}\)( loại )

=> MinG = 5/2 <=> \(\frac{1}{4}\le x\le\frac{3}{2}\)

H = | x - 2018 | + | x - 2019 | + | x - 2020 | 

H = | x - 2019 | + [ | x - 2018 | + | x - 2020 | ]

H = | x - 2019 | + [ x - 2018 | + | -( x - 2020 ) | ]

H = | x - 2019 | + [ | x - 2018 | + | 2020 - x | ]

Ta có : | x - 2019 | ≥ 0 ∀ x

| x - 2018 | + | 2020 - x | ≥ | x - 2018 + 2020 - x | = | 2 | = 2 ( BĐT | a | + | b | ≥ | a + b | )

=> | x - 2019 | + [ | x - 2018 | + | 2020 - x | ] ≥ 2

Đẳng thức xảy ra <=> \(\hept{\begin{cases}\left|x-2019\right|=0\\\left(x-2018\right)\left(2020-x\right)\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2019\\2018\le x\le2020\end{cases}}\)

=> x = 2019

=> MinH = 2 <=> x = 2019

12 tháng 12 2017

vì |x+2017|\(\ge\)0

=> |x+2017|+2018\(\ge\)2018

|x+2017|+2019\(\ge\)2019

=> GTNN của \(\dfrac{\left|x+2017\right|+2018}{\left|x+2017\right|+2019}\)=\(\dfrac{2018}{2019}\)

12 tháng 12 2017

Sai rồi bạn ơi :))

1 tháng 1 2019

a) \(A=\left|x-1\right|+2018\)

Vì \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow A\ge2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

1 tháng 1 2019

\(Tacó:\)

\(|x-1|\ge0\Rightarrow|x-1|+2018\left(\cdot\right)\ge2018\)

\(\Rightarrow GTNNcua\left(\cdot\right)=2018\)

Dấu "=" xảy ra khi: x=1

Vậy (*) Đạt GTNN là: 2018 khi: x=1

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

$H=|x-2018|+|x-2019|+|x-2020|$

$=|x-2018|+|x-2020|+|x-2019|=|x-2018|+|2020-x|+|x-2019|$

Ta có:

$|x-2018|+|2020-x|\geq |x-2018+2020-x|=2$

$|x-2019|\geq 0$ với mọi $x$

$\Rightarrow H\geq 2$

Vậy $H_{\min}=2$. Dấu "=" xảy ra khi \(\left\{\begin{matrix} (x-2018)(2020-x)\geq 0\\ x-2019=0\end{matrix}\right.\Leftrightarrow x=2019\)

AH
Akai Haruma
Giáo viên
24 tháng 8 2020

Lời giải:

Bạn áp dụng BĐT sau:

$|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$

Ta có:

\(F=|2x-2|+|2x-2003|=|2x-2|+|2003-2x|\geq |2x-2+2003-2x|=2001\)

Vậy $F_{\min}=2001$. Dấu "=" xảy ra khi $(2x-2)(2003-2x)\geq 0$

$\Leftrightarrow 1\leq x\leq \frac{2003}{2}$

---------------

\(G=|2x-3|+\frac{1}{2}|4x-1|=|2x-3|+|2x-\frac{1}{2}|=|3-2x|+|2x-\frac{1}{2}|\geq |3-2x+2x-\frac{1}{2}|\)

\(=\frac{5}{2}\)

Vậy $G_{\min}=\frac{5}{2}$. Dấu "=" xảy ra khi $(3-2x)(2x-\frac{1}{2})\geq 0$

$\Leftrightarrow \frac{1}{4}\leq x\leq \frac{3}{2}$

19 tháng 12 2019

B1:

\(A=\left(x+2020\right)^4+\left|y-2019\right|-2018\)

+Có: \(\left(x+2020\right)^4\ge0với\forall x\\\left|y-2019\right|\ge0với\forall y\\\Rightarrow \left(x+2020\right)^4+\left|y-2019\right|-2018\ge-2018\\ \Leftrightarrow A\ge-2018 \)

+Dấu "=" xảy ra khi

\(\left(x+2020\right)^4=0\\ \Leftrightarrow x=-2020\)

\(\left|y-2019\right|=0\\ \Leftrightarrow y=2019\)

+Vậy \(A_{min}=-2018\) khi \(x=-2020,y=2019\)