\(\dfrac{1}{4x}\)+2011 ( với x>0)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

Bài 1:

Ta có: \(M=4x^2-3x+\dfrac{1}{4x}+2011=4x^2-4x+1+x+\dfrac{1}{4x}+2010\)

\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2010\)

\(=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\)

Áp dụng BĐT Cô- si cho 2 số không âm, ta có:

\(x+\dfrac{1}{4x}\ge2\sqrt{x.\dfrac{1}{4x}}=2\sqrt{\dfrac{1}{4}}=1\)

Suy ra: \(M=\left(2x-1\right)^2+\left(x+\dfrac{1}{4x}\right)+2010\ge0+1+2010=2011\)

Vậy: \(Min_M=2011\Leftrightarrow x=\dfrac{1}{2}\)

Bài 2: Tham khảo: với hai số thực không âm a, b thỏa a2 + b2 = 4, tìm giá trị lớn nhất của biểu thức M= ab /(a+b+2) | Câu hỏi ôn tập thi vào lớp 10

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

Lời giải:

a)

Ta có: \(A=4x^2-x-2=(2x)^2-2.2x.\frac{1}{4}x+(\frac{1}{4})^2-\frac{33}{16}\)

\(=(2x-\frac{1}{4})^2-\frac{33}{16}\)

\((2x-\frac{1}{4})^2\geq 0, \forall x\in\mathbb{R}\Rightarrow A\ge 0-\frac{33}{16}=-\frac{33}{16}\)

Vậy GTNN của $A$ là $\frac{-33}{16}$ khi $x=\frac{1}{8}$

b)

\(B=\frac{2x^2+6x-3}{5}=\frac{2(x^2+3x+\frac{9}{4})-\frac{15}{2}}{5}\)

\(=\frac{2(x+\frac{3}{2})^2-\frac{15}{2}}{5}\geq \frac{2.0-\frac{15}{2}}{5}=\frac{-3}{2}\)

Vậy \(B_{\min}=\frac{-3}{2}\Leftrightarrow (x+\frac{3}{2})^2=0\Leftrightarrow x=\frac{-3}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2018

c)

\(C=x^4+4x-1\)

\(=x^4-2x^2+1+2x^2+4x-2\)

\(=(x^2-1)^2+2(x^2+2x+1)-4\)

\(=(x^2-1)^2+2(x+1)^2-4\)

\(=(x-1)^2(x+1)^2+2(x+1)^2-4=(x+1)^2[(x-1)^2+2]-4\)

Thấy rằng:

\((x+1)^2\geq 0; (x-1)^2+2>0\Rightarrow (x+1)^2[(x-1)^2+2]\geq 0\)

\(\Rightarrow C\geq 0-4=-4\)

Vậy $C_{\min}=-4$ khi \((x+1)^2=0\Leftrightarrow x=-1\)

d)

\(D=4x^2+\frac{9}{x^2}=(2x)^2+(\frac{3}{x})^2-2.2x.\frac{3}{x}+12\)

\(=(2x-\frac{3}{x})^2+12\geq 0+12=12\)

Vậy $D_{\min}=12$ khi \(2x-\frac{3}{x}=0\Leftrightarrow x=\pm \sqrt{\frac{3}{2}}\)

16 tháng 2 2019

a ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :

\(x^2+y^2+\dfrac{1}{xy}\ge\dfrac{\left(x+y\right)^2}{2}+\dfrac{1}{\dfrac{\left(x+y\right)^2}{4}}=\dfrac{2^2}{2}+\dfrac{1}{\dfrac{2^2}{4}}=2+1=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=1\)

Vậy ...

b ) Áp dụng BĐT Cô-si với 2 số x ; y > 0 , ta có :

\(x+y+\dfrac{1}{xy}\ge3\sqrt[3]{xy.\dfrac{1}{xy}}=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=\dfrac{1}{xy}\)

\(\Leftrightarrow x^2y=y^2x=1\)

\(\Leftrightarrow x^3y^3=1\Leftrightarrow xy=1\left(x;y>0\right)\)

\(\Leftrightarrow x=y=1\)

Vậy ...

2 tháng 2 2016

câu a) rút x theo y thế vào A rồi áp dụng HĐT

b)rút xy thế vào B 

c)HĐT

d)rút x theo y thé vào C

rồi dùng BĐT cô-si

e)BĐT chưa dấu giá trị tuyệt đối

 

6 tháng 6 2015

+) Tính giá trị của  x2 + 4x - 1 tại x = -2 + \(\sqrt{5}\)

=> (-2 + \(\sqrt{5}\)2 + 4.(-2 + \(\sqrt{5}\)) - 1 = 4 - 4\(\sqrt{5}\) + 5 - 8 + 4\(\sqrt{5}\) - 1   = 0 

Vậy x2 + 4x - 1  = 0 tại x = -2 + \(\sqrt{5}\)

+) A = 3x3.(x2 + 4x  - 1 ) - 5x3 - 23x2 - 7x + 1

       = 3x3.(x2 + 4x  - 1 ) - 5x.(x2 + 4x - 1) - 3x2 - 12x + 1

      = (3x- 5x).(x2 + 4x  - 1 ) - 3.(x2 + 4x -1) - 2 =  (3x- 5x - 3).(x2 + 4x  - 1 )  - 2

Vậy tại x = - 2 + \(\sqrt{5}\) thì A = - 2 

+) A =  (3x- 5x - 3).(x2 + 4x  - 1 )  - 2 chia cho (x2 + 4x  - 1 ) dư - 2

5 tháng 7 2020

vừa với giải xong giờ lại giải lại :v

\(M=4x^2-3x+\frac{1}{4x}+2011\)

\(=\left(2x-1\right)^2+x+\frac{1}{4x}+2010\)

Theo bđt Cauchy : \(x+\frac{1}{4x}\ge2\sqrt[2]{\frac{1}{4}}=1\)

Suy ra : \(M\ge1+2010=2011\)

Vậy \(Min_M=2011\)khi \(x=\frac{1}{2}\)

a: \(\text{Δ}=\left(-5\right)^2-4\cdot3\cdot8=25-96< 0\)

Do đó: Phươbg trình vô nghiệm

b: \(\text{Δ}=\left(-3\right)^2-4\cdot15\cdot5=9-300< 0\)

Do đó: Phương trình vô nghiệm

c: \(\Leftrightarrow x^2-4x+4-3=0\)

\(\Leftrightarrow\left(x-2\right)^2=3\)

hay \(x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)

d: \(\Leftrightarrow3x^2+6x+x+2=0\)

=>(x+2)(3x+1)=0

=>x=-2 hoặc x=-1/3