K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GS
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KK
19 tháng 2 2018
a, A=2x2+y2-2xy-2x+3
= (x2-2xy+y2)+(2x2-2x+2)+1
=(x-y)2+2(x-1)2+1
vì (x-y)2 ≥0 ∀x,y
(x-1)2 ≥ 0 ∀x
=> (x-y)2+2(x-1)2+1 ≥1 ∀x,y
=> A ≥1
= > GTNN A = 1 khi
x-1=0
=> x=1
x-y=0
=> 1-y=0
=> y=1
vậy GTNN A =1 khi x=y=1
LN
0
DS
4
1 tháng 9 2017
\(3x^{n-2+n-2}-3x^{n-2}y^{n+2}+3x^{n-2}y^{n+2}-y^{n+2+n-2}\)
\(3x^{2n}-y^{2n}\)
HT
0
NT
1
2 tháng 9 2018
sửa đề chút nha . nhưng chẳn bt số máy nên mk lây 9 nha :)
ta có : \(F=x^2+y^2-xy+3x+3y+9\)
\(=\dfrac{x^2-2xy+y^2+x^2+6x+9+y^2+6y+9}{2}\)
\(=\dfrac{\left(x-y\right)^2+\left(x+3\right)^2+\left(y+3\right)^2}{2}\ge0\)
\(\Rightarrow\) GTNN của \(F\) là \(0\) dâu "=" xảy ra khi \(x=y=-3\)
Vậy GTNN của \(F\) là \(0\) khi \(x=y=-3\)
LH
1
* \(3x+y=1\Rightarrow y=1-3x\)
\(M=3x^2+\left(1-3x\right)^2=3x^2+1-6x+9x^2=12x^2-6x+1=12\left(x^2-\dfrac{1}{2}x+\dfrac{1}{12}\right)=12\left(x^2-2.x.\dfrac{1}{4}+\dfrac{1}{16}\right)+\dfrac{1}{4}=12\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)\(\Rightarrow Min_M=\dfrac{1}{4}\Leftrightarrow x=y=\dfrac{1}{4}\)
\(N=x^2+xy+y^2-3x-3y\)
\(4N=4x^2+4xy+4y^2-12x-12y\)
\(4N=\left(4x^2+4xy+y^2\right)-12x-6y+9+3y^2-6y+3-12\)
\(4N=\left(2x+y\right)^2-2.3\left(2x+y\right)+9+3\left(y-1\right)^2-12\)
\(4N=\left(2x+y-3\right)^2+3\left(y-1\right)^2-10\ge-12\)
\(\Rightarrow N\ge-3\)
\(\Rightarrow Min_N=-3\Leftrightarrow x=y=1\)
Phùng Khánh Linh ừ ha :))