Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 ) \(A=\sqrt{x-2}+\sqrt{4-x}\)
ĐKXĐ : \(2\le x\le4\)
\(\Rightarrow A^2=x-2+4-x+2\sqrt{\left(x-2\right)\left(4-x\right)}=2+2\sqrt{\left(x-2\right)\left(4-x\right)}\)
Áp dụng bđt AM - GM ta có :
\(2\sqrt{\left(x-2\right)\left(4-x\right)}\le x-2+4-x=2\)
\(\Rightarrow A^2\le2+2=4\Rightarrow-2\le A\le2\)
Mà A > 0 nên ko thể có min = - 2 nên \(2\le x\le4\) ta chọn x = 2
=> A = \(\sqrt{2}\)
Vậy \(\sqrt{2}\le A\le2\)
A=\(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+3\right)^2}\)=|x-1|+|x+3|=|1-x|+|x+3|
Áp dụng bđt |a|+|b|\(\ge\)|a+b| ta được: A=|1-x|+|x+3|\(\ge\)|1-x+x+3|=4
Dấu "=" xảy ra khi (1-x)(x+3)\(\ge\)0 <=> \(-3\le x\le1\)
Vậy Amin=4 khi \(-3\le x\le1\)
A = \(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}\)
= \(\sqrt{\left(1-x\right)^2}+\sqrt{\left(x+3\right)^2}\)
= 1 - x + x + 3
= 4
a) Tìm GTNN của biểu thức : |x - 2015| + |x - 2016|.
b) Tìm GTLN của biểu thức : \(\sqrt{8+2x-x^2}\).
a)=**** 100%
b)\(\sqrt{2^3+1}\) phần b ko bít đúng ko nhưng phần a đúng ko 100%
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
ké với
ĐKXĐ ....\(-1\le x\le2\)
\(A^2=.....=\left(\sqrt{\left(4-x\right)\left(x +1\right)}-\sqrt{\left(2-x\right)\left(x+2\right)}\right)^2+2\)
\(\Rightarrow A^2\ge2\)(1)
Xét hiệu \(\left(-x^2+2x+8\right)-\left(-x^2+x+2\right)=x+6>0\)(Vì \(-1\le x\le2\))
\(\Rightarrow A>0\)(2)
Từ (1) và (2) ta có: \(A\ge\sqrt{2}\)
Dấu = xảy ra khi......x=0(TM)
Vậy minA=\(\sqrt{2}\)khi \(x=0\)