K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

\(A=\left|x-125\right|+\left|x+75\right|\)

\(A=\left|125-x\right|+\left|75+x\right|\)

Ta có: \(\hept{\begin{cases}\left|125-x\right|\ge125-x\\\left|75+x\right|\ge75+x\end{cases}\Rightarrow\left|125-x\right|+\left|x+75\right|\ge125-x+x+75=200}\)

\(A=200\Leftrightarrow\hept{\begin{cases}\left|125-x\right|=125-x\\\left|75+x\right|=75+x\end{cases}\Leftrightarrow\hept{\begin{cases}125-x\ge0\\75+x\ge0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le125\\x\ge-75\end{cases}\Rightarrow}-75\le x\le125}\)

Vậy \(A_{min}=200\Leftrightarrow75\le x\le125\)

Tham khảo nhé~

2 tháng 8 2018

ta có : \(A=\left|x-125\right|+\left|x+75\right|=\left|125-x\right|+\left|x+75\right|\ge\left|125-x+x+75\right|=200\)

vậy giá trị nhỏ nhất của \(A\)\(200\)

dấu "=" xảy ra khi : \(\left(125-x\right)\left(x+75\right)\ge0\Leftrightarrow-75\le x\le125\)

25 tháng 9 2018

gọi ý:

a,b biến đổi làm sao để:

a) áp dụng:  \(\left|a\right|-\left|b\right|\le\left|a-b\right|\)

b) áp dụng:  \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

c) Đánh giá:  \(\left|x-2015\right|^{2015}\ge0\)

                     \(\left(y-2016\right)^{2016}\ge0\)

=>  \(C\ge1\)khi  \(\hept{\begin{cases}x=2015\\y=2016\end{cases}}\)

25 tháng 9 2018

a ) A = | x - 5 | - | x - 7 |

Nhận xét :

| x - 5 | - | x - 7 | < | x - 5 - x + 7 |

=> A < | 2 |

=> A < 2

Dấu "=" xảy ra khi : ( x - 5  ) ( x - 7 ) > 0 

                            TH1 : \(\hept{\begin{cases}x-5>0\\x-7>0\end{cases}}\)

                                 => \(\hept{\begin{cases}x>5\\x>7\end{cases}}\)

                                    => x > 7

                             TH2 : \(\hept{\begin{cases}x-5< 0\\x-7< 0\end{cases}}\)

                                   => \(\hept{\begin{cases}x< 5\\x< 7\end{cases}}\)

                                      => x < 5

Vậy A lớn nhất bằng 2 khi x < 5 hoặc x > 7

b ) B = | 125 - x | + | x - 65 |

Ta có : 

| 125 - x | + | x - 65 | > | 125 - x + x - 65 |

=> B > | 60 |

=> B > 60

Dấu " = " xảy ra khi : ( 125 - x ) ( x - 65 ) > 0

TH1 : \(\hept{\begin{cases}125-x>0\\x-65>0\end{cases}}\)

=> \(\hept{\begin{cases}x< 125\\x>65\end{cases}}\)

=> 65 < x < 125

TH2 : \(\hept{\begin{cases}125-x< 0\\x-65< 0\end{cases}}\)

=> \(\hept{\begin{cases}x>125\\x< 65\end{cases}}\)

=> 125 < x < 65 ( vô lí )

Vậy giá trị lớn nhất của B là 60 khi 65 < x < 125

c ) C = | x - 2015 |2015 + ( y - 2016 )2016 + 1

Nhận xét :

| x - 2015 |2015 > 0 với mọi x

( y - 2016 )2016 > 0 với mọi x

=> | x - 2015 |2015 + ( y - 2016 )2016 > 0 

=> | x - 2015 |2015 + ( y - 2016 )2016 + 1 > 1 

=> C > 1

Dấu "=" xảy ra khi : x - 2015 = 0

                               và y - 2016 = 0

=> x = 2015

      y = 2016

Vậy giá trị nhỏ nhất của C là 1 khi x = 2015 và y = 2016

4 tháng 10 2019

mọi người ơi giúp mình với mình sắp phải nộp rồi

4 tháng 10 2019

ap dung bdt \(|a|+|b|\ge|a+b|\) voi \(a.b\ge0\)

thi \(A\ge|x-2016+2007-x|=|1|=1\)

vay GTNN cua A = 1 . Dat duoc khi \(\left(x-2016\right)\left(2017-x\right)\ge0\)

                                                           <=> \(2016\le x\le2017\)

chuc ban hoc tot

17 tháng 11 2019

Áp dụng BĐT dạng \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có :

A = \(\left|x-1\right|+\left|x+2012\right|=\left|1-x\right|+\left|x+2012\right|\ge\left|1-x+x+2012\right|\)

\(\Leftrightarrow A\ge2013\)

Vậy GTNN của \(A=2013\)

Giastrij này đạt tại \(\left(1-x\right)\left(x+2012\right)\ge0\Leftrightarrow-2012\le x\le1\)

17 tháng 11 2019

\(A=\left|x-1\right|+\left|x+2012\right|\)

\(A=\left|1-x\right|+\left|x+2012\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :

\(A\ge\left|1-x+x+2013\right|=2013\)

Dấu bằng xảy ra 

\(\Leftrightarrow\left(1-x\right)\left(x+2012\right)=0\)

\(\Leftrightarrow-2012\le x\le1\)

Vậy Min A= 2013 \(\Leftrightarrow-2012\le x\le1\)