\(\sqrt{-x^2+4x+21}\) - \(\sqrt{-x^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

Xét tính chẵn lẻ:

a) TXĐ: D = R \ {π/2 + kπ| k nguyên}

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{3\tan^3\left(-x\right)-5\sin\left(-x\right)}{2+\cos\left(-x\right)}=-\frac{3\tan^3x-5\sin x}{2+\cos x}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

b) TXĐ: D = R \ \(\left\{\pm\sqrt{2};\pm1\right\}\)

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{\sin\left(-x\right)}{\left(-x\right)^4-3\left(-x\right)^2+2}=-\frac{\sin x}{x^4-3x^2+2}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

 

25 tháng 8 2016

Tìm GTLN, GTNN:

TXĐ: D = R

a)  Ta có (\(\left(\sin x+\cos x\right)^2=1+\sin2x\)

Với mọi x thuộc D ta có\(-1\le\sin2x\le1\Leftrightarrow0\le1+\sin2x\le2\Leftrightarrow0\le\left(\sin x+\cos x\right)^2\le2\)

\(\Leftrightarrow0\le\left|\sin x+\cos x\right|\le\sqrt{2}\Leftrightarrow-\sqrt{2}\le\sin x+\cos x\le\sqrt{2}\)

Vậy  \(Min_{f\left(x\right)}=-\sqrt{2}\) khi \(\sin2x=-1\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

\(Max_{f\left(x\right)}=\sqrt{2}\) khi\(\sin2x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

b) Với mọi x thuộc D ta có: 

\(-1\le\cos x\le1\Leftrightarrow-2\le2\cos x\le2\Leftrightarrow1\le2\cos x+3\le5\)

\(\Leftrightarrow1\le\sqrt{2\cos x+3}\le\sqrt{5}\Leftrightarrow5\le\sqrt{2\cos x+3}+4\le\sqrt{5}+4\)

Vậy\(Min_{f\left(x\right)}=5\)  khi \(\cos x=-1\Leftrightarrow x=\pi+k2\pi\)

\(Max_{f\left(x\right)}=\sqrt{5}+4\)  khi \(\cos x=1\Leftrightarrow x=k2\pi\)

c) \(y=\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\)\(=1-\frac{1}{2}\left(2\sin x\cos x\right)^2=1-\frac{1}{2}\sin^22x\)

Với mọi x thuộc D ta có: \(0\le\sin^22x\le1\Leftrightarrow-\frac{1}{2}\le-\frac{1}{2}\sin^22x\le0\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)

Đến đây bạn tự xét dấu '=' xảy ra khi nào nha :p

AH
Akai Haruma
Giáo viên
23 tháng 8 2017

Lời giải:

ĐKXĐ: \(-2\leq x\leq 5\)

Ta có:

\(y=\sqrt{-x^2+4x+21}-\sqrt{-x^2+3x+10}\)

\(\Rightarrow y'=\frac{4-2x}{2\sqrt{-x^2+4x+21}}-\frac{3-2x}{2\sqrt{-x^2+3x+10}}\)

PT \(y'=0\) có nghiệm \(x=\frac{1}{3}\)

Lập bảng biến thiên.

Thấy \(y(-2)=3\);\(y(5)=4\);\(y\left (\frac{1}{3}\right)=\sqrt{2}\)

Do đó, \(\left\{\begin{matrix} y_{\max}=4\Leftrightarrow x=5\\ y_{\min}=\sqrt{2}\Leftrightarrow x=\frac{1}{3}\end{matrix}\right.\)

23 tháng 8 2017

thank nha

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

19 tháng 2 2017

Đk: \(x\ge2;y\ge-1;0< x+y\le9\)

Ta có: \(\sqrt{2x-4}+\frac{1}{\sqrt{2}}\sqrt{2(y+1)}\leq\sqrt{3(x+y-1)}\)

Từ giả thiết suy ra

\(x+y-1=\sqrt{2x-4}+\sqrt{y+1}\Rightarrow x+y-1\leq\sqrt{3(x+y-1)}\)

Vậy \(1\leq(x+y)\leq4\). Đặt \(\left\{\begin{matrix}t=x+y\\t\in\left[1;4\right]\end{matrix}\right.\) ta có:

\(P=t^2-\sqrt{9-t}+\frac{1}{\sqrt{t}}\)

\(P'\left(t\right)=2t+\frac{1}{2\sqrt{9-t}}-\frac{1}{2t\sqrt{t}}>0\forall t\in\left[1;4\right]\)

Vậy \(P\left(t\right)\) đồng biến trên \([1;4]\)

Suy ra \(P_{max}=P\left(4\right)=4^2-\sqrt{9-4}+\frac{1}{\sqrt{4}}=\frac{33-2\sqrt{5}}{2}\) khi \(\left\{\begin{matrix}x=4\\y=0\end{matrix}\right.\)

\(P_{min}=P\left(1\right)=2-2\sqrt{2}\) khi \(\left\{\begin{matrix}x=2\\y=-1\end{matrix}\right.\)

14 tháng 5 2016

a. \(y=\sqrt[3]{1-x}\) có tập xác định \(x\in R\)

 

b. \(y=\log_3\left(x^2-3x\right)\)

Điều kiện : \(x^2-3x>0\Leftrightarrow\left[\begin{array}{nghiempt}x< 0\\x>0\end{array}\right.\)

                                   \(\Leftrightarrow\) TXĐ \(D=\left(-\infty;0\right)\cup\left(3;+\infty\right)\)

 

c. \(y=\log_{x^2-4x+4}2013\)

Điều kiện : \(\begin{cases}x^2-4x+4>0\\x^2-4x+4\ne1\end{cases}\)\(\Leftrightarrow\begin{cases}\left(x-2\right)^2>0\\x^2-4x+3>0\end{cases}\)

                                              \(\Leftrightarrow\begin{cases}x\ne2\\x\ne1\\x\ne3\end{cases}\)

Vậy tập xác định là \(D=R\backslash\left\{1;2;3\right\}\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 5 2017

Hàm lũy thừa, mũ và loagrit

28 tháng 8 2021

hacker

23 tháng 5 2017

Hàm lũy thừa, mũ và loagrit