\(-5x^2-4x+1\)

giải gấp giùm mk nhé!!!

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2017

-5x2 - 4x + 1 lớn nhất khi x bé nhất suy ra x=0 vậy gt lớn nhất = 1

24 tháng 6 2017

\(=-5x^2-x+5x+1=x\left(5x+1\right)+\left(5x+1\right)\)

\(=\left(5x+1\right)\left(x+1\right)\le0\)

MAX=0 khi\(\orbr{\begin{cases}5x+1=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{5}\\x=-1\end{cases}}}\)

21 tháng 1 2018

super easy . tập làm đi cho não có nếp nhăn Giang ơi  :)

21 tháng 1 2018

Mik làm bài 3 nha

Để \(\frac{2}{x^2-6x+17}\)đạt GTLN thì

\(x^2-6x+17\)đạt GTNN

Mà \(x^2-6x\ge0\)Do 6x mang dấu trừ

Suy ra \(x^2-6x+17\ge17\)

Suy ra \(x^2-6x+17\)đạt GTNN khi

\(x^2-6x+17=17\)

\(\Leftrightarrow x^2-6x=0\)

Dấu ''='' xảy ra khi:

\(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Vậy \(\frac{2}{x^2-6x+17}\)đạt GTLN tại \(\hept{\begin{cases}x=0\\x=6\end{cases}}\)

Câu cuôi tương tự

18 tháng 10 2018

\(A=\frac{2}{-5x^2+3x+2}=\frac{2}{\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}}\)

\(A=\frac{2}{-5\left(x^2-\frac{3}{5}+\frac{9}{100}\right)+\frac{49}{20}}=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\ge\frac{2}{\frac{49}{20}}=\frac{40}{49}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(-5\left(x-\frac{3}{10}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{3}{10}\)

Vậy GTNN của \(A\) là \(\frac{40}{49}\) khi \(x=\frac{3}{10}\)

\(B=\frac{5}{5x^2+4x+1}=\frac{5}{\left(5x^2+4x+\frac{4}{5}\right)+\frac{1}{5}}\)

\(B=\frac{5}{5\left(x^2+\frac{4}{5}x+\frac{4}{25}\right)+\frac{1}{5}}=\frac{5}{5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}}\le\frac{5}{\frac{1}{5}}=25\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(5\left(x+\frac{2}{5}\right)^2=0\)\(\Leftrightarrow\)\(x=\frac{-2}{5}\)

Vậy GTLN của \(B\) là \(25\) khi \(x=\frac{-2}{5}\)

Chúc bạn học tốt ~ 

18 tháng 10 2018

a) Ta có: A bé nhất khi \(-5x^2+3x+2\) lớn nhất

Ta có: \(-5x^2+3x+2=\left(-5x^2+3x-\frac{9}{20}\right)+\frac{49}{20}\)

\(=-5\left(x^2-2.\frac{3}{10}+\frac{9}{100}\right)=-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}\le\frac{49}{20}\)

Do đó \(A=\frac{2}{-5\left(x-\frac{3}{10}\right)^2+\frac{49}{20}}\le\frac{40}{49}\)

Dấu "=" xảy ra \(\Leftrightarrow-5\left(x-\frac{3}{10}\right)^2=0\Leftrightarrow x=\frac{3}{10}\)

Vậy \(A_{max}=\frac{40}{49}\Leftrightarrow x=\frac{3}{10}\)

b) Để B lớn nhất thì \(5x^2+4x+1\) bé nhất.Ta có:

\(5x^2+4x+1=\left(5x^2+4x\right)+1\)

\(=5\left(x^2+\frac{4}{5}x\right)+1=5\left(x^2+2.\frac{4}{10}+\frac{4}{25}\right)+\frac{1}{5}\)

\(=5\left(x+\frac{2}{5}\right)^2+\frac{1}{5}\ge\frac{1}{5}\)

Do đó \(B=\frac{5}{5\left(x+\frac{2}{5}\right)^2}\le\frac{5}{\frac{1}{5}}=25\)

Dấu "=" xảy ra \(\Leftrightarrow5\left(x+\frac{2}{5}\right)^2=0\Leftrightarrow x=-\frac{2}{5}\)

Vậy \(B_{max}=25\Leftrightarrow x=-\frac{2}{5}\)

23 tháng 6 2017

Hàn Dĩnh \(-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}\right)+\dfrac{9}{5}\)Đặt -5 ta ngoài ở trong còn x^2 ; 4/5x rồi cộng 4/25 để thành hằng đẳng thức .NHưng đề bài là +1 , bây giờ mình phải + 9/5 để = 1 , đúng với đề bài

23 tháng 6 2017

\(a,4x-x^2=4-\left(4-4x+x^2\right)=4-\left(2-x\right)^24\le\)Vậy GTLN của biểu thức là \(4\) khi \(2-x=0\Rightarrow x=2\)

\(b,-5x^2-4x+1=-5\left(x^2+\dfrac{4}{5}x+\dfrac{4}{25}\right)+\dfrac{9}{5}=-5\left(x+\dfrac{2}{5}\right)^2+\dfrac{9}{5}\le\dfrac{9}{5}\)Vậy GTLN của biểu thức là \(\dfrac{9}{5}\) khi \(x+\dfrac{2}{5}=0\Rightarrow x=\dfrac{-2}{5}\)

21 tháng 6 2017

b)(2x - 1)^2 - (2x + 5) (2x - 5 ) = 18

4x 2 -4x+1-4x 2+25=18

26-4x=18

4x=8

x=2

21 tháng 6 2017

a,27x-18=2x-3x^2

<=> 3x^2-2x+27-18x=0

<=> 3x^2-20x+27=0

\(\Delta\)= 20^2-4-12.27

tính \(\Delta\)rồi tìm x1 ,x2

8 tháng 10 2016

1. D = 3( x2 - 2x.1/3 + 1/9) -1/3 +1

GTNN D = 5/6

dài quá, nản quá

 

9 tháng 10 2016

tks bn

7 tháng 7 2016

5x (1/5x -2) + 3(6-1/3x^2) =12

x^2 - 10x + 18 -x^2 =12

-10x + 18 = 12

-10x = -6

x= 6/10

5(x^2 - 3x +1) + x(1-5x) = x-2

5x^2 - 15x + 5 + x - 5x^2 = x-2

-15x = -7

x= 7/15

6 tháng 8 2016

\(-4x^2+5x-21\)

\(=-4\left(x^2-\frac{5}{4}x\right)-21\)

\(=-4\left(x^2-2x.\frac{5}{8}+\frac{25}{64}\right)-21+\frac{25}{16}\)

\(=-4\left(x-\frac{5}{8}\right)^2-\frac{311}{16}\)

Có \(\left(x-\frac{5}{8}\right)^2\ge0\) với mọi x

=> \(-4\left(x-\frac{5}{8}\right)^2\le0\)với mọi x

=> \(-4\left(x-\frac{5}{8}\right)^2-\frac{311}{16}\le\frac{-311}{16}\)với mọi x

Dấu "=" xảy ra <=> \(x-\frac{5}{8}=0\)<=> \(x=\frac{5}{8}\)

KL: GTLN của biểu thức là \(\frac{-311}{16}\)<=> \(x=\frac{5}{8}\)

6 tháng 8 2016

\(A=-4x^2+5x-21\)

\(=-\left[\left(2x\right)^2-2\times2x\times\frac{5}{4}+\left(\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2+21\right]\)

\(=-\left[\left(2x-\frac{5}{4}\right)^2+\frac{311}{16}\right]\)

\(\left(2x-\frac{5}{4}\right)^2\ge0\)

\(\left(2x-\frac{5}{4}\right)^2+\frac{311}{16}\ge\frac{311}{16}\)

\(-\left[\left(2x-\frac{5}{4}\right)^2+\frac{311}{16}\right]\le-\frac{311}{16}\)

Vậy Max A = \(-\frac{311}{16}\) khi x = \(\frac{5}{8}\)