\(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\)vớ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Ta có BĐT sau: \(x^3+y^3\ge xy\left(x+y\right)\) với x, y > 0(dễ dàng chứng minh)

Áp dụng vào suy ra \(A\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(A\le\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\)

\(=\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{1}{\left(a+b+c\right)}\left(\frac{a+b+c}{abc}\right)=\frac{1}{abc}=1\) (rút thừa số chung 1/(a+b+c) ra rồi quy đồng và rút gọn)

5 tháng 8 2019

Ta có BĐT sau: x3+y3xy(x+y)x3+y3≥xy(x+y) với x, y > 0(dễ dàng chứng minh)

Áp dụng vào suy ra A1ab(a+b)+1+1bc(b+c)+1+1ca(c+a)+1A≤1ab(a+b)+1+1bc(b+c)+1+1ca(c+a)+1

A1ab(a+b)+abc+1bc(b+c)+abc+1ca(c+a)+abcA≤1ab(a+b)+abc+1bc(b+c)+abc+1ca(c+a)+abc

=1ab(a+b+c)+1bc(a+b+c)+1ca(a+b+c)=1ab(a+b+c)+1bc(a+b+c)+1ca(a+b+c)

=1(a+b+c)(a+b+cabc)=1abc=1=1(a+b+c)(a+b+cabc)=1abc=1 (rút thừa số chung 1/(a+b+c) ra rồi quy đồng và rút gọn)

28 tháng 4 2020

Đặt \(a=x^2;b=y^2;c=z^2\)khi đó ta được xyz=1 và biểu thức P viết được thành

\(P=\frac{1}{x^2+2y^2+3}+\frac{1}{y^2+2x^2+3}+\frac{1}{z^2+2x^2+3}\)

Ta có \(x^2+y^2\ge2xy;y^2+1\ge2y\Rightarrow x^2+2y^2+3\ge2\left(xy+y+1\right)\)

Do đó ta được \(\frac{1}{x^2+2y^2+3}\le\frac{1}{2}\cdot\frac{1}{xy+y+1}\)

Chứng minh tương tự ta có:

\(\frac{1}{y^2+2z^2+3}\le\frac{1}{2}\cdot\frac{1}{yz+z+1};\frac{1}{z^2+2x^2+3}\le\frac{1}{2}\cdot\frac{1}{zx+z+1}\)

Cộng các vế BĐT trên ta được

\(P\le\frac{1}{2}\left(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}\right)\)

Ta cần chứng minh \(\frac{1}{ab+b+1}+\frac{1}{bc+b+1}+\frac{1}{ca+a+1}=1\)

Do xyz=1 nên ta được

\(\frac{1}{xy+y+1}+\frac{1}{yz+z+1}+\frac{1}{zx+x+1}=\frac{zx}{z+1+zx}+\frac{x}{1+zx+z}+\frac{1}{zx+x+1}=1\)

Từ đó ta được

\(P\le\frac{1}{2}\). Dấu "=" xảy ra <=> a=b=c=1

7 tháng 2 2020

theo bđt cauchy-schwarz ta có \(P\ge\frac{\left(1+1+1\right)^2}{3+2\left(a^3+b^3+c^3\right)}=\frac{9}{3+2\left(a^3+b^3+c^3\right)}\)

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3=3abc}\)\(\Rightarrow P\ge\frac{9}{3+2\cdot3abc}=\frac{9}{3+6}=1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(P_{max}=1\Leftrightarrow a=b=c=1\)

7 tháng 2 2020

Sorry mình viết nhầm nha \(3\sqrt[3]{a^3b^3c^3}=3abc\)mới đúng nha

25 tháng 12 2019

We have:

\(M=1-\frac{1}{3}\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\)

Consider:

\(\Sigma_{cyc}\frac{a^2+b^2}{a^2+b^2+3}\ge\frac{3}{2}\)

\(VT\ge\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\)

Prove:

\(\frac{\left(\Sigma_{cyc}\sqrt{a^2+b^2}\right)^2}{2\left(a^2+b^2+c^2\right)+9}\ge\frac{3}{2}\)

\(\Leftrightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge2\left(a^2+b^2+c^2\right)+27\)

Consider:

\(\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge\Sigma_{cyc}a^2+\Sigma_{cyc}ab\)

\(\Rightarrow4\Sigma_{cyc}\sqrt{\left(a^2+b^2\right)\left(b^2+c^2\right)}\ge4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab\)

Now we need to prove:

\(4\Sigma_{cyc}a^2+4\Sigma_{cyc}ab=2\Sigma_{cyc}a^2+27\)

\(\Leftrightarrow2\left(a+b+c\right)^2=27\) (not fail)

\(\Rightarrow M\le\frac{1}{2}\)

Sign '=' happen when \(a=b=c=\sqrt{\frac{3}{2}}\)

Dễ chứng minh \(a^3+b^3\ge ab\left(a+b\right)\)với \(a>0,b>0\). Do đó:

\(a^3+b^3+1\ge ab\left(a+b\right)+abcab\left(a+b+c\right)\)

\(A\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)

\(max_A=1\Leftrightarrow a=b=c=1\)

P/s : Các bạn tham khảo nha

30 tháng 10 2016

Ta có :(a+b-c)2 \(\ge\) 0

<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)

<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)

<=>bc+ac-ab \(\le\frac{5}{6}< 1\)

<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)

13 tháng 12 2018

C/m: BDT:  \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)   (1)

That vay ta co:

\(a^3+b^3+abc-ab\left(a+b+c\right)=\left(a+b\right)\left(a-b\right)^2\ge0\)   (luon dung)

Tuong tu ta co:  \(b^3+c^3+abc\ge bc\left(a+b+c\right)\)  (2)

                         \(c^3+a^3+abc\ge ca\left(a+b+c\right)\)   (3)

Tu (1), (2), (3)  suy ra:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)   (dpcm)

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

NV
28 tháng 4 2019

Ta chứng minh BĐT \(x^3+y^3\ge xy\left(x+y\right)\) với x; y dương

Thật vậy, BĐT \(\Leftrightarrow x^3-x^2y+y^3-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

Áp dụng:

\(T=\sum\frac{1}{a^3+b^3+1}=\sum\frac{abc}{a^3+b^3+abc}\le\sum\frac{abc}{ab\left(a+b\right)+abc}=\sum\frac{abc}{ab\left(a+b+c\right)}=\sum\frac{c}{a+b+c}=1\)

\(\Rightarrow T_{max}=1\) khi \(a=b=c=1\)

3 tháng 2 2020

1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)

\(=ac+bc+c^2+ab\)

\(=a\left(b+c\right)+c\left(b+c\right)\)

\(=\left(b+c\right)\left(a+b\right)\)

CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)

\(b+ca=\left(b+c\right)\left(a+b\right)\)

Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)

Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)

CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)

\(\Rightarrow P\le\frac{1}{2}.3\)

\(\Rightarrow P\le\frac{3}{2}\)

Dấu"="xảy ra \(\Leftrightarrow a=b=c\)

Vậy /...

3 tháng 2 2020

\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)

\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)

Tương tự rồi cộng lại:

\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" xảy ra tại \(a=b=c=1\)