Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2\left|7x+5\right|+11}{\left|7x+5\right|+4}\ge\frac{11}{4}\)
\(MaxA=\frac{11}{4}\Leftrightarrow7x+5=0\)
\(\Rightarrow x=\frac{-5}{7}\)
Lần sau viết đề cho dễ nhìn chút nhé! Viết vậy nhìn vô chả ai muốn giải đâu...=((( Mình cũng không chắc chắn là đúng...
a) \(A=3-\left|\frac{1}{3}-2x\right|\)
A lớn nhất khi \(\left|\frac{1}{3}-2x\right|\) bé nhất
Mà \(\left|\frac{1}{3}-2x\right|\ge0\forall x\in Q\)
Do đó \(A_{max}=3\Leftrightarrow\left|\frac{1}{3}-2x\right|=0\Leftrightarrow x=\frac{1}{6}\)
b) Nhìn không nổi đề bạn viết. Viết lại đề đi!!!!! Bạn viết kiểu đó ai mà muốn giải . Hay nói đúng hơn là không nhìn ra để giải...=((
c) \(C=\frac{1-\left|8x-\frac{2}{3}\right|}{2}\). Ta có
C lớn nhất khi \(1-\left|8x-\frac{2}{3}\right|\) lớn nhất. Mà \(1-\left|8x-\frac{2}{3}\right|\)lớn nhất khi \(\left|8x-\frac{2}{3}\right|\)bé nhất.
Ta thấy: \(\left|8x-\frac{2}{3}\right|\ge0\forall x\in Q\)
Do đó \(1-\left|8x-\frac{2}{3}\right|\) lớn nhất bằng 1
Thế vào đề bài ta có: \(C_{max}=\frac{1}{2}\Leftrightarrow\text{}\left|8x-\frac{2}{3}\right|=0\Leftrightarrow x=\frac{1}{12}\)
Bạn Đỗ Ngọc Hải nói đúng đấy
Rút gọn đc thôi :
\(C=1-\frac{8x-\frac{2}{3}}{2}\)
\(C=\frac{2}{2}-\frac{8x-\frac{2}{3}}{2}\)
\(C=\frac{2-8x+\frac{2}{3}}{2}\)
\(C=\frac{2\cdot\left(1-4x+\frac{1}{3}\right)}{2}\)
\(C=1-4x+\frac{1}{3}\)
đến đây ai biết làm ko giúp bạn ấy :))
\(A=\left(2x-50\right)^{10}-12\ge-12\)
Dấu ''='' xảy ra khi x = 25
\(B=-\left|3x-2\right|+18\le18\)
Dấu ''='' xảy ra khi x = 2/3
\(A=\frac{1}{\left|x-2\right|+3}\)
Để x đạt giá trị lớn nhất thì \(\left|x-2\right|+3\) đạt giá trị nhỏ nhất
Có: \(\left|x-2\right|\ge0\Rightarrow\left|x-2\right|+3\ge3\)
Dấu bằng xảy ra khi \(x-2=0\Rightarrow x=2\)
Vậy \(Max_A=\frac{1}{3}\)tại \(x=2\)
\(A=\frac{1}{\left|x+2\right|}+3\)Trường hợp : \(x+2\ne0\Rightarrow x=-2\)
Ta có : \(\left|x+2\right|>0\Rightarrow\frac{1}{\left|x+2\right|}>0\)
\(\Rightarrow A=\frac{1}{\left|x+2\right|}+3\ge3\)
MAx \(A=3\Leftrightarrow\frac{1}{\left|x+2\right|}=0\left(vôlys\right)\)
Vậy A ko tồn tại giá trị lớn nhất